COMPUTER - eomon
NETWORKING

A Top-Down Approach

KUROSE +ROSS

COMPUTER rrmeomon

NETWORKING

JAMES F. KUROSE

University of Massachusetts, Amherst

KEITH W. ROSS
Polytechnic Institute of NYU

Addison-Wesley

New York Boston San Francisco
London Toronto Sydney Tokyo Singapore Madrid
Mexico City Munich Paris Cape Town Hong Kong Montreal

Editor-in-Chief Michael Hirsch

Editorial Assistant Stephanie Sellinger

Senior Production Supervisor Marilyn Lloyd

Cover Designer Joyce Cosentino Wells

Cover Image © REUTERS/Jean-Phillipe Arbs/London
Online Product Manager Bethany Tidd

Senior Manufacturing Buyer Carol Melville

Senior Media Buyer Ginny Michaud

Marketing Manager Erin Davis

Production Services Nesbitt Graphics, Inc.

Project Management Rose Kernan

Access the latest information about Addison-Wesley titles from our World Wide Web site:
http:www.aw.com/computing

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instruc-
tional value. They have been tested with care but are not guaranteed for any particular pur-
pose. The publisher does not offer any warranty or representation, nor does it accept any
liabilities with respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data available upon request.

Copyright © 2010 Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the publisher. Printed in the United States
of America. For information on obtaining permission for use of material in this work, please
submit a written request to Pearson Education, Inc., Rights and Contracts Department, 501
Boylston Street, Suite 900, Boston, MA 02116, fax your request to 617-671-3447, or e-mail at
http://www.pearsoned.com/legal/permissions.htm.

Addison-Wesley
is an imprint of

ISBN-13: 978-0-13-607967-5

ISBN-10:
PEARSON
L ——— .
www.pearsonhighered.com 23456789 10—EB—12 11 10 09

0-13-607967-9

http://www.aw.com/computing
http://www.pearsoned.com/legal/permissions.htm
www.pearsonhighered.com

About the Authors

Jim Kurose

Jim Kurose is a Distinguished University Professor of Computer Science at the
University of Massachusetts, Amherst.

Dr. Kurose has received a number of recognitions for his educational
activities including Outstanding Teacher Awards from the National
Technological University (eight times), the University of Massachusetts, and
the Northeast Association of Graduate Schools. He received the IEEE Taylor
Booth Education Medal and was recognized for his leadership of
Massachusetts” Commonwealth Information Technology Initiative. He has
been the recipient of a GE Fellowship, an IBM Faculty Development Award,
and a lilly Teaching Fellowship.

Dr. Kurose is a former Editor-in-Chief of IEEE Transactions on
Communications and of IEEE/ACM Transactions on Networking. He has
been active in the program committees for IEEE Infocom, ACM SIGCOMM,
ACM Internet Measurement Conference, and ACM SIGMETRICS for a
number of years and has served as Technical Program Co-Chair for those
conferences. He is a Fellow of the IEEE and the ACM. His research interests
include network protocols and architecture, network measurement, sensor
networks, multimedia communication, and modeling and performance
evaluation. He holds a PhD in Computer Science from Columbia University.

Keith Ross

Keith Ross is Department Head and Leonard J. Shustek Distinguished Chair
Professor in Computer Science at Polytechnic Institute of NYU (in Brooklyn). From
1985 to 1998 he was a professor in the Department of Systems Engineering af
the University of Pennsylvania. From 1998 to 2003 he was a professor in the
Multimedia Communications Department at Institute Eurecom in France. Keith
Ross is also the principal founder and original CEO of Wimba, which devel-
ops Voice over IP and streaming technologies for e-learning markets.

Professor Ross's research interests are in peerfo-peer networking, Internet
measurement, video streaming, Web caching, confent distribution networks,
network security, Voice over IP, and sfochastic modeling. He is an IEEE Fellow,
and is currently associate editor for IEEE/ACM Transactions on Networking.

He has served as an advisor to the Federal Trade Commission on P2P file
sharing. He has been active in the program committees for IEEE Infocom,
ACM SIGCOMM, ACM CoNext, IPTPS, ACM Multimedia, ACM Internet
Measurement Conference, and ACM SIGMETRICS. He holds a PhD in
Computer, Information, and Control Engineering from the University of Michigan.

This page intentionally left blank

To Julie and our three precious
ones—Chris, Charlie, and Nina
JFK

To my wonderful wife, Véronique,
and our three daughters, Cécile, Claire, and Katie
KWR

This page intentionally left blank

Preface

Welcome to the fifth edition of Computer Networking: A Top-Down Approach.
Since the publication of the first edition nine years ago, our book has been adopted
for use at many hundreds of colleges and universities, translated into more than a
dozen languages, and used by over one hundred thousand students and practitioners
worldwide. We’ve heard from many of these readers and have been overwhelmed
by the positive response.

What’s New in the Fifth Edition?

‘We think one important reason for this success has been that our book continues to offer
a fresh and timely approach to computer networking instruction. We’ve made changes
in this fifth edition, but we’ve also kept unchanged what we believe (and the instructors
and students who have used our book have confirmed) to be the most important aspects
of this book: its top-down approach, its focus on the Internet and a modern treatment of
computer networking, its attention to both principles and practice, and its accessible
style and approach toward learning about computer networking.

Nevertheless, we’ve made a number of important changes in the fifth edition.
Beginning in Chapter 1, we’ve updated our introduction to the topic of networking
and updated and expanded our coverage of access networks (in particular, the use of
cable networks, DSL, and fiber-to-the-home as access networks to the public Inter-
net). In chapter 2, we’ve removed material on peer-to-peer search that had become a
bit dated to make room for a new section on distributed hash tables. As always, when
material is retired from the book, it remains available on the book’s Companion Web-
site (see below). The presentation of TCP congestion control in Chapter 3 is now
based on a graphical (finite state machine) representation of TCP, adding structure
and clarity to our coverage. Chapter 5 has been significantly extended, with new sec-
tions on virtual local area networks (VLANSs) and on “a day in the life of a web
request.” This latter section traces all of the network activity and protocols involved
in satisfying the seemingly simple request to fetch and display a web page from a
remote server, helping illustrate and synthesize much of the material covered in the
first five chapters. In Chapter 6, we’ve removed some of the “alphabet soup” of stan-
dards and protocols in cellular telephony and added a new section on the architecture
of cellular networks and how the cellular network and the Internet interoperate to
provide Internet services to mobile devices such as a Blackberry phone or iPhone.
Our coverage of network security in Chapter 8 has undergone significant revision.
The material on endpoint authentication, cipher-block chaining, and public-key

viii

Preface

cryptography has been revised, and the material on IPsec has been rewritten and
expanded to include Virtual Private Networks (VPNs). Throughout the book, we’ve
included new state-of-the-art examples and up-to-date references. For the end-of-
chapter material, we’ve added many new homework problems (a request that we’ve
heard from many instructors), ported our hands-on labs from Ethereal to Wireshark,
added new Wireshark labs, and added a new lab on IPsec.

Audience

This textbook is for a first course on computer networking. It can be used in both
computer science and electrical engineering departments. In terms of programming
languages, the book assumes only that the student has experience with C, C++, or
Java (and even then only in a few places). Although this book is more precise and
analytical than many other introductory computer networking texts, it rarely uses
any mathematical concepts that are not taught in high school. We have made a delib-
erate effort to avoid using any advanced calculus, probability, or stochastic process
concepts (although we’ve included some homework problems for students with this
advanced background). The book is therefore appropriate for undergraduate courses
and for first-year graduate courses. It should also be useful to practitioners in the
telecommunications industry.

What Is Unique about This Textbook?

The subject of computer networking is enormously complex, involving many con-
cepts, protocols, and technologies that are woven together in an intricate manner. To
cope with this scope and complexity, many computer networking texts are often
organized around the “layers” of a network architecture. With a layered organiza-
tion, students can see through the complexity of computer networking—they learn
about the distinct concepts and protocols in one part of the architecture while seeing
the big picture of how all parts fit together. From a pedagogical perspective, our per-
sonal experience has been that such a layered approach indeed works well. Never-
theless, we have found that the traditional approach of teaching—bottom up; that is,
from the physical layer towards the application layer—is not the best approach for a
modern course on computer networking.

A Top-Down Approach

Our book broke new ground ten years ago by treating networking in a top-down
manner—that is, by beginning at the application layer and working its way down
toward the physical layer. The feedback we received from teachers and students
alike have confirmed that this top-down approach has many advantages and does

indeed work well pedagogically. First, it places emphasis on the application layer
(a “high growth area” in networking). Indeed, many of the recent revolutions in
computer networking—including the Web, peer-to-peer file sharing, and media
streaming—have taken place at the application layer. An early emphasis on application-
layer issues differs from the approaches taken in most other texts, which have only a
small amount of material on network applications, their requirements, application-layer
paradigms (e.g., client-server and peer-to-peer), and application programming inter-
faces. Second, our experience as instructors (and that of many instructors who have
used this text) has been that teaching networking applications near the beginning of
the course is a powerful motivational tool. Students are thrilled to learn about how
networking applications work—applications such as e-mail and the Web, which most
students use on a daily basis. Once a student understands the applications, the student
can then understand the network services needed to support these applications. The
student can then, in turn, examine the various ways in which such services might be
provided and implemented in the lower layers. Covering applications early thus pro-
vides motivation for the remainder of the text.

Third, a top-down approach enables instructors to introduce network applica-
tion development at an early stage. Students not only see how popular applications
and protocols work, but also learn how easy it is to create their own network appli-
cations and application-level protocols. With the top-down approach, students get
early exposure to the notions of application programming interfaces (APIs), service
models, and protocols—important concepts that resurface in all subsequent layers.
By providing socket programming examples in Java, we highlight the central ideas
without confusing students with complex code. Undergraduates in electrical engi-
neering and computer science should not have difficulty following the Java code.

An Internet Focus

Although we dropped the phrase “Featuring the Internet” from the title of this book
with the 4th edition, this doesn’t mean that we dropped our focus on the Internet!
Indeed, nothing could be further from the case! Instead, since the Internet has
become so pervasive, we felt that any networking textbook must have a significant
focus on the Internet, and thus this phrase was somewhat unnecessary. We continue
to use the Internet’s architecture and protocols as primary vehicles for studying fun-
damental computer networking concepts. Of course, we also include concepts and
protocols from other network architectures. But the spotlight is clearly on the Inter-
net, a fact reflected in our organizing the book around the Internet’s five-layer archi-
tecture: the application, transport, network, link, and physical layers.

Another benefit of spotlighting the Internet is that most computer science and
electrical engineering students are eager to learn about the Internet and its protocols.
They know that the Internet has been a revolutionary and disruptive technology and
can see that it is profoundly changing our world. Given the enormous relevance of
the Internet, students are naturally curious about what is “under the hood.” Thus, it

Preface

ix

X

Preface

is easy for an instructor to get students excited about basic principles when using the
Internet as the guiding focus.

Teaching Networking Principles

Two of the unique features of the book—its top-down approach and its focus on the
Internet—have appeared in the titles of our book. If we could have squeezed a third
phrase into the subtitle, it would have contained the word principles. The field of
networking is now mature enough that a number of fundamentally important issues
can be identified. For example, in the transport layer, the fundamental issues include
reliable communication over an unreliable network layer, connection establishment/
teardown and handshaking, congestion and flow control, and multiplexing. Two fun-
damentally important network-layer issues are determining “good” paths between
two routers and interconnecting a large number of heterogeneous networks. In the
data link layer, a fundamental problem is sharing a multiple access channel. In net-
work security, techniques for providing confidentiality, authentication, and message
integrity are all based on cryptographic fundamentals. This text identifies fundamen-
tal networking issues and studies approaches towards addressing these issues. The
student learning these principles will gain knowledge with a long “shelf life”—long
after today’s network standards and protocols have become obsolete, the principles
they embody will remain important and relevant. We believe that the combination of
using the Internet to get the student’s foot in the door and then emphasizing funda-
mental issues and solution approaches will allow the student to quickly understand
just about any networking technology.

The Web Site

Purchasing this textbook grants each reader six months of access to a Companion
Website for all book readers at http://www.aw.com/kurose-ross, which includes:

e Interactive learning material. The Website contains several interactive Java
applets, animating many of the key networking concepts. The site also has inter-
active quizzes that permit students to check their basic understanding of the sub-
ject matter. Professors can integrate these interactive features into their lectures
or use them as mini labs.

* Additional technical material. As we have added new material in each edition of
our book, we’ve had to remove coverage of some existing topics to keep the
book at manageable length. For example, to make room for the new material in
this edition, we’ve removed material on ATM networks and P2P search. Material
that appeared in earlier editions of the text is still of interest, and can be found on
the book’s Website.

* Programming assignments. The Website also provides a number of detailed
programming assignments, which include building a multithreaded Web

http://www.aw.com/kurose-ross

server, building an e-mail client with a GUI interface, programming the sender
and receiver sides of a reliable data transport protocol, programming a distrib-
uted routing algorithm, and more.

* Wireshark labs. One’s understanding of network protocols can be greatly deep-
ened by seeing them in action. The Website provides numerous Wireshark
assignments that enable students to actually observe the sequence of messages
exchanged between two protocol entities. The Website includes separate Wire-
shark labs on HTTP, DNS, TCP, UDP, IP, ICMP, Ethernet, ARP, WiFi, SSL, and
on tracing all protocols involved in satisfying a request to fetch a web page.
We’ll continue to add new labs over time.

Pedagogical Features

We have each been teaching computer networking for more than 20 years.
Together, we bring more than 45 years of teaching experience to this text, during
which time we have taught many thousands of students. We have also been active
researchers in computer networking during this time. (In fact, Jim and Keith first
met each other as master’s students in a computer networking course taught by
Mischa Schwartz in 1979 at Columbia University.) We think all this gives us a
good perspective on where networking has been and where it is likely to go in the
future. Nevertheless, we have resisted temptations to bias the material in this book
towards our own pet research projects. We figure you can visit our personal Web
sites if you are interested in our research. Thus, this book is about modern com-
puter networking—it is about contemporary protocols and technologies as well as
the underlying principles behind these protocols and technologies. We also believe
that learning (and teaching!) about networking can be fun. A sense of humor, use
of analogies, and real-world examples in this book will hopefully make this mate-
rial more fun.

Historical Sidebars, Principles in Practice, and a Focus on
Security

The field of computer networking has a rich and fascinating history. We have made
a special effort in the text to tell the history of computer networking. This is done
with a special historical section in Chapter 1 and with about a dozen historical side-
bars sprinkled throughout the chapters. In these historical pieces, we cover the
invention of packet switching, the evolution of the Internet, the birth of major net-
working giants such as Cisco and 3Com, and many other important events. Students
will be stimulated by these historical pieces. We include special sidebars that high-
light important principles in computer networking. These sidebars will help students
appreciate some of the fundamental concepts being applied in modern networking.

Preface

Xi

xii

Preface

Some of our increased coverage of network security appears in the “Focus on Secu-
rity” sidebars in each of the core chapters of this book.

Interviews

‘We have included yet another original feature that our readers have told us they have
found particulary interesting and inspiring—interviews with renowned innovators
in the field of networking. We provide interviews with Len Kleinrock, Bram Cohen,
Sally Floyd, Vint Cerf, Simon Lam, Charlie Perkins, Henning Schulzrinne, Steven
Bellovin, and Jeff Case.

Supplements for Instructors

We provide a complete supplements package to aid instructors in teaching this course.
This material can be accessed from Addison-Wesley’s Instructor Resource Center
(http://www.pearsonhighered.com/irc). Visit the Instructor Resource Center or send e-
mail to computing@aw.com for information about accessing these instructor’s sup-
plements.

e PowerPoint® slides. We provide PowerPoint slides for all nine chapters. The
slides have been significantly updated with this 5th edition. The slides cover
each chapter in detail. They use graphics and animations (rather than relying
only on monotonous text bullets) to make the slides interesting and visually
appealing. We provide the original PowerPoint slides so you can customize them
to best suit your own teaching needs. Some of these slides have been contributed
by other instructors who have taught from our book.

* Homework solutions. We provide a solutions manual for the homework problems
in the text, programming assignments, and Wireshark labs. As noted earlier, we’ve
introduced many new homework problems in the first five chapters of the book.

Chapter Dependencies

The first chapter of this text presents a self-contained overview of computer net-
working. Introducing many key concepts and terminology, this chapter sets the stage
for the rest of the book. All of the other chapters directly depend on this first chap-
ter. We recommend that, after completing Chapter 1, instructors cover Chapters 2
through 5 in sequence, following our top-down philosophy. Each of these five chap-
ters leverages material from the preceding chapters. After completing the first five
chapters, the instructor has quite a bit of flexibility. There are no interdependencies
among the last four chapters, so they can be taught in any order. We know instruc-
tors who, after teaching the introductory chapter, start with Chapter 5 and work

http://www.pearsonhighered.com/irc

backwards (bottom-up), and even one who starts in the middle (Chapter 4) and
works his way out in both directions. However, each of the last four chapters
depends on the material in the first five chapters. Many instructors teach the first
five chapters and then teach one of the last four chapters for “dessert.”

One Final Note: We’d Love to Hear from You

We encourage students and instructors to e-mail us with any comments they might
have about our book. It’s been wonderful for us to hear from so many instructors
and students from around the world about our first four editions. We’ve incorporated
many of these suggestions into later editions of the book. We also encourage instructors
to send us new homework problems (and solutions) that would complement the
current homework problems. We’ll post these on the instructor-only portion of the
Web site. We also encourage instructors and students to create new Java applets that
illustrate the concepts and protocols in this book. If you have an applet that you
think would be appropriate for this text, please submit it to us. If the applet (including
notation and terminology) is appropriate, we’ll be happy to include it on the text’s
Web site, with an appropriate reference to the applet’s authors.

So, as the saying goes, “Keep those cards and letters coming!” Seriously,
please do continue to send us interesting URLSs, point out typos, disagree with
any of our claims, and tell us what works and what doesn’t work. Tell us what
you think should or shouldn’t be included in the next edition. Send your e-mail
to kurose @cs.umass.edu and ross @poly.edu.

Acknowledgments

Since we began writing this book in 1996, many people have given us invaluable
help and have been influential in shaping our thoughts on how to best organize and
teach a networking course. We want to say A BIG THANKS to everyone who has
helped us from the earliest first drafts of this book, up to this fifth edition. We are also
very thankful to the many hundreds of readers from around the world—students, fac-
ulty, practitioners—who have sent us thoughts and comments on earlier editions of
the book and suggestions for future editions of the book. Special thanks go out to:

Al Aho (Columbia University)

Hisham Al-Mubaid (University of Houston-Clear Lake)
Pratima Akkunoor (Arizona State University)

Paul Amer (University of Delaware)

Shamiul Azom (Arizona State University)

Lichun Bao (University of California at Irvine)

Preface

Xiii

Xiv

Preface

Paul Barford (University of Wisconsin)

Bobby Bhattacharjee (University of Maryland)

Steven Bellovin (Columbia University)

Pravin Bhagwat (Wibhu)

Supratik Bhattacharyya (previously at Sprint)

Ernst Biersack (Eurécom Institute)

Shahid Bokhari (University of Engineering & Technology, Lahore)
Jean Bolot (Sprint)

Daniel Brushteyn (former University of Pennsylvania student)
Ken Calvert (University of Kentucky)

Evandro Cantu (Federal University of Santa Catarina)

Jeff Case (SNMP Research International)

Jeff Chaltas (Sprint)

Vinton Cerf (Google)

Byung Kyu Choi (Michigan Technological University)

Bram Cohen (BitTorrent, Inc.)

Constantine Coutras (Pace University)

John Daigle (University of Mississippi)

Edmundo A. de Souza e Silva (Federal University of Rio de Janiero)
Philippe Decuetos (Eurécom Institute)

Christophe Diot (Thomson Research)

Prithula Dhunghel (Polytechnic Institute of NYU)

Michalis Faloutsos (University of California at Riverside)
Wu-chi Feng (Oregon Graduate Institute)

Sally Floyd (ICIR, University of California at Berkeley)

Paul Francis (Max Planck Institute)

Lixin Gao (University of Massachusetts)

JJ Garcia-Luna-Aceves (University of California at Santa Cruz)
Mario Gerla (University of California at Los Angeles)

David Goodman (Polytechnic University)

Tim Griffin (Cambridge University)

Max Hailperin (Gustavus Adolphus College)

Bruce Harvey (Florida A&M University, Florida State University)
Carl Hauser (Washington State University)

Rachelle Heller (George Washington University)

Phillipp Hoschka (INRIA/W3C)

Wen Hsin (Park University)

Albert Huang (former University of Pennsylvania student)
Esther A. Hughes (Virginia Commonwealth University)

Jobin James (University of California at Riverside)

Sugih Jamin (University of Michigan)

Shivkumar Kalyanaraman (Rensselaer Polytechnic Institute)
Jussi Kangasharju (University of Darmstadt)

Sneha Kasera (University of Utah)

Hyojin Kim (former University of Pennsylvania student)
Leonard Kleinrock (University of California at Los Angeles)
David Kotz (Dartmouth College)

Beshan Kulapala (Arizona State University)
Rakesh Kumar (Bloomberg)

Miguel A. Labrador (University of South Florida)
Simon Lam (University of Texas)

Steve Lai (Ohio State University)

Tom LaPorta (Penn State University)

Tim-Berners Lee (World Wide Web Consortium)
Lee Leitner (Drexel University)

Brian Levine (University of Massachusetts)
William Liang (former University of Pennsylvania student)
Willis Marti (Texas A&M University)

Nick McKeown (Stanford University)

Josh McKinzie (Park University)

Deep Medhi (University of Missouri, Kansas City)
Bob Metcalfe (International Data Group)

Sue Moon (KAIST)

Erich Nahum (IBM Research)

Christos Papadopoulos (Colorado Sate University)
Craig Partridge (BBN Technologies)

Radia Perlman (Sun Microsystems)

Jitendra Padhye (Microsoft Research)

Vern Paxson (University of California at Berkeley)
Kevin Phillips (Sprint)

George Polyzos (Athens University of Economics and Business)
Sriram Rajagopalan (Arizona State University)
Ramachandran Ramjee (Microsoft Research)

Ken Reek (Rochester Institute of Technology)
Martin Reisslein (Arizona State University)
Jennifer Rexford (Princeton University)

Leon Reznik (Rochester Institute of Technology)
Sumit Roy (University of Washington)

Avi Rubin (Johns Hopkins University)

Dan Rubenstein (Columbia University)

Douglas Salane (John Jay College)

Despina Saparilla (Cisco Systems)

Henning Schulzrinne (Columbia University)
Mischa Schwartz (Columbia University)

Harish Sethu (Drexel University)

K. Sam Shanmugan (University of Kansas)

Preface

XV

xvi

Preface

Prashant Shenoy (University of Massachusetts)

Clay Shields (Georgetown University)

Subin Shrestra (University of Pennsylvania)

Mihail L. Sichitiu (NC State University)

Peter Steenkiste (Carnegie Mellon University)

Tatsuya Suda (University of California at Irvine)

Kin Sun Tam (State University of New York at Albany)
Don Towsley (University of Massachusetts)

David Turner (California State University, San Bernardino)
Nitin Vaidya (University of Illinois)

Michele Weigle (Clemson University)

David Wetherall (University of Washington)

Ira Winston (University of Pennsylvania)

Di Wu (Polytechnic Institute of NYU)

Raj Yavatkar (Intel)

Yechiam Yemini (Columbia University)

Ming Yu (State University of New York at Binghamton)
Ellen Zegura (Georgia Institute of Technology)
Honggang Zhang (Suffolk University)

Hui Zhang (Carnegie Mellon University)

Lixia Zhang (University of California at Los Angeles)
Shuchun Zhang (former University of Pennsylvania student)
Xiaodong Zhang (Ohio State University)

ZhiLi Zhang (University of Minnesota)

Phil Zimmermann (independent consultant)

Cliff C. Zou (University of Central Florida)

We’d like to acknowledge and thank Honggang Zhang from Suffolk University for
working with us to revise and enhance some of the problem sets in this edition. We
also want to thank the entire Addison-Wesley team—in particular, Michael Hirsch,
Marilyn Lloyd, and Stephanie Sellinger—who have done an absolutely outstanding
job on this fifth edition (and who have put up with two very finicky authors who
seem congenitally unable to meet deadlines!). Thanks also to our artists, Janet
Theurer and Patrice Rossi Calkin, for their work on the beautiful figures in this book,
and to Nesbitt Graphics, Harry Druding, and Rose Kernan for their wonderful pro-
duction work on this edition. Finally, a most special thanks go to Michael Hirsch, our
editor at Addison-Wesley, and Susan Hartman, our former editor at Addison-Wesley.
This book would not be what it is (and may well not have been at all) without their
graceful management, constant encouragement, nearly infinite patience, good
humor, and perseverance.

Table of Contents

Chapter 1 Computer Networks and the Internet

1.1

1.2

1.3

1.4

1.5

1.6
1.7

1.8

What Is the Internet?

1.1.1 A Nuts-and-Bolts Description

1.1.2 A Services Description

1.1.3 What Is a Protocol?

The Network Edge

1.2.1 Client and Server Programs

1.2.2 Access Networks

1.2.3 Physical Media

The Network Core

1.3.1 Circuit Switching and Packet Switching

1.3.2 How Do Packets Make Their Way Through
Packet-Switched Networks?

1.3.3 ISPs and Internet Backbones

Delay, Loss, and Throughput in Packet-Switched Networks

1.4.1 Overview of Delay in Packet-Switched Networks

1.4.2 Queuing Delay and Packet Loss

1.4.3 End-to-End Delay

1.4.4 Throughput in Computer Networks

Protocol Layers and Their Service Models

1.5.1 Layered Architecture

1.5.2 Messages, Segments, Datagrams, and Frames

Networks Under Attack

History of Computer Networking and the Internet

1.7.1 The Development of Packet Switching: 1961-1972

1.7.2 Proprietary Networks and Internetworking: 1972—-1980

1.7.3 A Proliferation of Networks: 1980-1990

1.7.4 The Internet Explosion: The 1990s

1.7.5 Recent Developments

Summary

Road-Mapping This Book

33
34
36
36
40
43
45
48
48
54
56
61
61
63
65
66
67
68
69

Xvii

Xviii Table of Contents

Chapter 2

Homework Problems and Questions
Problems

Discussion Questions

Wireshark Lab

Interview: Leonard Kleinrock

Application Layer

2.1

2.2

23

24

2.5

2.6

2.7

2.8
2.9

Principles of Network Applications

2.1.1 Network Application Architectures

2.1.2 Processes Communicating

2.1.3 Transport Services Available to Applications
2.1.4 Transport Services Provided by the Internet
2.1.5 Application-Layer Protocols

2.1.6 Network Applications Covered in This Book
The Web and HTTP

2.2.1 Overview of HTTP

2.2.2 Non-Persistent and Persistent Connections
2.2.3 HTTP Message Format

2.2.4 User-Server Interaction: Cookies

2.2.5 Web Caching

2.2.6 The Conditional GET

File Transfer: FTP

2.3.1 FTP Commands and Replies

Electronic Mail in the Internet

24.1 SMTP

2.4.2 Comparison with HTTP

2.4.3 Mail Message Formats

2.4.4 Mail Access Protocols

DNS—The Internet’s Directory Service

2.5.1 Services Provided by DNS

2.5.2 Overview of How DNS Works

2.5.3 DNS Records and Messages

Peer-to-Peer Applications

2.6.1 P2P File Distribution

2.6.2 Distributed Hash Tables (DHTSs)

2.6.3 Case Study: P2P Internet Telephony with Skype

Socket Programming with TCP

2.7.1 Socket Programming with TCP

2.7.2 An Example Client-Server Application in Java
Socket Programming with UDP

Summary

70
72
79
80
82

85

86

86

90

92

94

98

99
100
100
102
105
110
112
116
118
120
120
123
126
127
127
132
133
135
141
146
147
153
158
160
161
163
170
178

Chapter 3

Table of Contents

Homework Problems and Questions
Problems

Discussion Questions

Socket Programming Assignments
Wireshark Labs

Interview: Bram Cohen

Transport Layer

3.1

32
33

34

3.5

3.6

3.7

3.8

Introduction and Transport-Layer Services

3.1.1 Relationship Between Transport and Network Layers

3.1.2 Overview of the Transport Layer in the Internet

Multiplexing and Demultiplexing

Connectionless Transport: UDP

3.3.1 UDP Segment Structure

3.3.2 UDP Checksum

Principles of Reliable Data Transfer

3.4.1 Building a Reliable Data Transfer Protocol

3.4.2 Pipelined Reliable Data Transfer Protocols

343 Go-Back-N (GBN)

3.4.4 Selective Repeat (SR)

Connection-Oriented Transport: TCP

3.5.1 The TCP Connection

3.5.2 TCP Segment Structure

3.5.3 Round-Trip Time Estimation and Timeout

3.5.4 Reliable Data Transfer

3.5.5 Flow Control

3.5.6 TCP Connection Management

Principles of Congestion Control

3.6.1 The Causes and the Costs of Congestion

3.6.2 Approaches to Congestion Control

3.6.3 Network-Assisted Congestion-Control Example:
ATM ABR Congestion Control

TCP Congestion Control

3.7.1 Fairness

Summary

Homework Problems and Questions
Problems

Discussion Questions

Programming Assignments
Wireshark Lab: Exploring TCP
Interview: Sally Floyd

Xix

179
181
189
190
192
193

197

198
198
201
203
210
214
214
216
218
227
230
235
242
243
245
250
254
262
264
271
272
278

279
281
290
294
296
299
310
311
312
313

XX Table of Contents

Chapter 4 The Network Layer

Chapter 5

4.1

4.2

43

4.4

4.5

4.6

4.7

4.8

Introduction

4.1.1 Forwarding and Routing

4.1.2 Network Service Models

Virtual Circuit and Datagram Networks

4.2.1 Virtual-Circuit Networks

4.2.2 Datagram Networks

4.2.3 Origins of VC and Datagram Networks
What'’s Inside a Router?

4.3.1 Input Ports

4.3.2 Switching Fabric

4.3.3 Output Ports

4.3.4 Where Does Queuing Occur?

The Internet Protocol (IP): Forwarding and Addressing in the Internet
4.4.1 Datagram Format

4.4.2 1Pv4 Addressing

4.4.3 Internet Control Message Protocol (ICMP)

444 IPv6
4.45 A Brief Foray into IP Security
Routing Algorithms

4.5.1 The Link-State (LS) Routing Algorithm
4.5.2 The Distance-Vector (DV) Routing Algorithm
4.5.3 Hierarchical Routing

Routing in the Internet

4.6.1 Intra-AS Routing in the Internet: RIP
4.6.2 Intra-AS Routing in the Internet: OSPF
4.6.3 Inter-AS Routing: BGP

Broadcast and Multicast Routing

4.7.1 Broadcast Routing Algorithms

4.7.2 Multicast

Summary

Homework Problems and Questions
Problems

Discussion Questions

Programming Assignment
Wireshark Labs

Interview: Vinton G. Cerf

The Link Layer and Local Area Networks

5.1

Link Layer: Introduction and Services
5.1.1 The Services Provided by the Link Layer
5.1.2 Where Is the Link Layer Implemented?

315
316
318
320
323
324
327
329
330
332
334
337
337
341
342
348
363
366
372
374
377
381
389
393
394
398
400
407
408
413
420
421
424
435
436
437
438

441
443
443
446

Chapter 6

Table of Contents

5.2 Error-Detection and -Correction Techniques
5.2.1 Parity Checks
5.2.2 Checksumming Methods
5.2.3 Cyclic Redundancy Check (CRC)
53 Multiple Access Protocols
5.3.1 Channel Partitioning Protocols
5.3.2 Random Access Protocols
5.3.3 Taking-Turns Protocols
5.3.4 Local Area Networks (LANSs)
5.4 Link-Layer Addressing
5.4.1 MAC Addresses
5.4.2 Address Resolution Protocol (ARP)
5.5 Ethernet
5.5.1 Ethernet Frame Structure
5.5.2 CSMA/CD: Ethernet’s Multiple Access Protocol
5.5.3 Ethernet Technologies
5.6 Link-Layer Switches
5.6.1 Forwarding and Filtering
5.6.2 Self-Learning
5.6.3 Properties of Link-Layer Switching
5.6.4 Switches Versus Routers
5.6.5 Virtual Local Area Networks (VLANS)
5.7 PPP: The Point-to-Point Protocol
5.7.1 PPP Data Framing
5.8 Link Virtualization: A Network as a Link Layer
5.9 ADay in the Life of a Web Page Request
5.10 Summary
Homework Problems and Questions
Problems
Discussion Questions
Wireshark Labs

Interview: Simon S. Lam

Wireless and Mobile Networks

6.1
6.2

6.3

Introduction

Wireless Links and Network Characteristics
6.2.1 CDMA

WiFi: 802.11 Wireless LANs

6.3.1 The 802.11 Architecture

6.3.2 The 802.11 MAC Protocol

6.3.3 The IEEE 802.11 Frame

XXi

448
450
452
452
455
457
459
466
467
469
469
471
475
477
481
483
486
487
489
490
491
493
497
499
501
505
510
511
513
520
520
521

523

524
529
532
536
537
541
547

xxii Table of Contents

Chapter 7

6.3.4 Mobility in the Same IP Subnet
6.3.5 Advanced Features in 802.11
6.3.6 Beyond 802.11: Bluetooth and WiMAX

6.4 Cellular Internet Access
6.4.1 An Overview of Cellular Architecture
6.5 Mobility Management: Principles
6.5.1 Addressing
6.5.2 Routing to a Mobile Node
6.6 Mobile IP
6.7 Managing Mobility in Cellular Networks
6.7.1 Routing Calls to a Mobile User
6.7.2 Handoffs in GSM
6.8 Wireless and Mobility: Impact on Higher-layer Protocols
6.9 Summary
Homework Problems and Questions
Problems
Discussion Questions
Wireshark Labs

Interview: Charlie Perkins

Multimedia Networking

7.1

7.2

7.3

7.4

Multimedia Networking Applications
7.1.1 Examples of Multimedia Applications
7.1.2 Hurdles for Multimedia in Today’s Internet
7.1.3 How Should the Internet Evolve to Support Multimedia Better?
7.1.4 Audio and Video Compression
Streaming Stored Audio and Video
7.2.1 Accessing Audio and Video Through a Web Server
7.2.2 Sending Multimedia from a Streaming Server to a
Helper Application
7.2.3 Real-Time Streaming Protocol (RTSP)
Making the Best of the Best-Effort Service
7.3.1 The Limitations of a Best-Effort Service
7.3.2 Removing Jitter at the Receiver for Audio
7.3.3 Recovering from Packet Loss
7.3.4 Distributing Multimedia in Today’s Internet:
Content Distribution Networks
7.3.5 Dimensioning Best-Effort Networks to Provide Quality of Service
Protocols for Real-Time Interactive Applications
74.1 RTP
7.4.2 RTP Control Protocol (RTCP)

551
552
554
558
558
564
566
568
573
579
580
581
584
587
588
589
593
593
594

597

598
598
601
602
604
608
608

610
612
616
616
619
622

626
629
631
631
636

Table of Contents xxiii

743 SIP 639

744 H.323 645

7.5 Providing Multiple Classes of Service 647
7.5.1 Motivating Scenarios 648

7.5.2 Scheduling and Policing Mechanisms 653

7.5.3 Diffserv 660

7.6 Providing Quality of Service Guarantees 665
7.6.1 A Motivating Example 665

7.6.2 Resource Reservation, Call Admission, Call Setup 667

7.6.3 Guaranteed QoS in the Internet: Intserv and RSVP 669

7.7 Summary 672
Homework Problems and Questions 673
Problems 674
Discussion Questions 681
Programming Assignment 682
Interview: Henning Schulzrinne 684
Chapter 8 Security in Computer Networks 687
8.1 What Is Network Security? 688
8.2 Principles of Cryptography 691
8.2.1 Symmetric Key Cryptography 692

8.2.2 Public Key Encryption 699

8.3 Message Integrity and End-Point Authentication 704
8.3.1 Cryptographic Hash Functions 705

8.3.2 Message Authentication Code 707

8.3.3 Digital Signatures 709

8.3.4 End-Point Authentication 716

8.4 Securing E-mail 721
8.4.1 Secure E-mail 722

8.42 PGP 726

8.5 Securing TCP Connections: SSL 727
8.5.1 The Big Picture 729

8.5.2 A More Complete Picture 732

8.6 Network-Layer Security: [Psec and Virtual Private Networks 734
8.6.1 IPsec and Virtual Private Networks (VPNs) 734

8.6.2 The AH and ESP Protocols 736

8.6.3 Security Associations 736

8.6.4 The IPset Datagram 737

8.6.5 IKE: Key Management in [Psec 741

8.7 Securing Wireless LANs 742
8.7.1 Wired Equivalent Privacy (WEP) 742

8.7.2 IEEES802.11i 744

XXiv Table of Contents

8.8 Operational Security: Firewalls and Intrusion Detection Systems 747
8.8.1 Firewalls 747

8.8.2 Intrusion Detection Systems 755

8.9 Summary 758
Homework Problems and Questions 760
Problems 762
Discussion Questions 768
Wireshark Lab 768
IPsec Lab 768
Interview: Steven M. Bellovin 769
Chapter 9 Network Management 771
9.1 What Is Network Management? 772
9.2 The Infrastructure for Network Management 776
9.3 The Internet-Standard Management Framework 780
9.3.1 Structure of Management Information: SMI 782

9.3.2 Management Information Base: MIB 786

9.3.3 SNMP Protocol Operations and Transport Mappings 788

9.3.4 Security and Administration 791

9.4 ASN. 794
9.5 Conclusion 799
Homework Problems and Questions 800
Problems 801
Discussion Questions 802
Interview: Jeff Case 803
References 805

Index 835

COMPUTER rrmeomon
NETWORKING

A Top-Down Approach

This page intentionally left blank

Computer
Networks and
the Internet

Today’s Internet is arguably the largest engineered system ever created by mankind,
with hundred of millions of connected computers, communication links, and
switches; hundreds of millions of users who connect intermittently via cell phones
and PDAs; and devices such as sensors, webcams, game consoles, picture frames,
and even washing machines being connected to the Internet. Given that the Internet
is so large and has so many diverse components and uses, is there any hope of
understanding how it (and more generally computer networks) work? Are there
guiding principles and structure that can provide a foundation for understanding
such an amazingly large and complex system? And if so, is it possible that it actu-
ally could be both interesting and fun to learn about computer networks? Fortu-
nately, the answers to all of these questions is a resounding YES! Indeed, it’s our
aim in this book to provide you with a modern introduction to the dynamic field of
computer networking, giving you the principles and practical insights you’ll need to
understand not only today’s networks, but tomorrow’s as well.

This first chapter presents a broad overview of computer networking and the
Internet. Our goal here is to paint a broad picture and set the context for the rest of
this book, to see the forest through the trees. We’ll cover a lot of ground in this intro-
ductory chapter and discuss a lot of the pieces of a computer network, without los-
ing sight of the big picture.

2

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

We’ll structure our overview of computer networks in this chapter as follows.
After introducing some basic terminology and concepts, we’ll first examine the
basic hardware and software components that make up a network. We’ll begin at the
network’s edge and look at the end systems and network applications running in the
network. We’ll then explore the core of a computer network, examining the links
and the switches that transport data, as well as the access networks and physical
media that connect end systems to the network core. We’ll learn that the Internet is a
network of networks, and we’ll learn how these networks connect with each other.

After having completed this overview of the edge and core of a computer net-
work, we’ll take the broader and more abstract view in the second half of this chap-
ter. We’ll examine delay, loss, and throughput in a computer network and provide
simple quantitative models for end-to-end throughput and delay: models that take
into account transmission, propagation, and queuing delays. We’ll then introduce
some of the key architectural principles in computer networking, namely, protocol
layering and service models. We’ll also learn that computer networks are vulnerable
to many different types of attacks; we’ll survey some of these attacks and consider
how computer networks can be made more secure. Finally, we’ll close this chapter
with a brief history of computer networking.

1.1 What Is the Internet?

In this book, we’ll use the public Internet, a specific computer network, as our prin-
cipal vehicle for discussing computer networks and their protocols. But what is the
Internet? There are a couple of ways to answer this question. First, we can describe
the nuts and bolts of the Internet, that is, the basic hardware and software components
that make up the Internet. Second, we can describe the Internet in terms of a net-
working infrastructure that provides services to distributed applications. Let’s begin
with the nuts-and-bolts description, using Figure 1.1 to illustrate our discussion.

1.1.1 A Nuts-and-Bolts Description

The Internet is a computer network that interconnects hundreds of millions of com-
puting devices throughout the world. Not too long ago, these computing devices
were primarily traditional desktop PCs, Linux workstations, and so-called servers
that store and transmit information such as Web pages and e-mail messages. Increas-
ingly, however, nontraditional Internet end systems such as TVs, laptops, gaming
consoles, cell phones, Web cams, automobiles, environmental sensing devices, pic-
ture frames, and home electrical and security systems are being connected to the
Internet. Indeed, the term computer network is beginning to sound a bit dated, given
the many nontraditional devices that are being hooked up to the Internet. In Internet
jargon, all of these devices are called hosts or end systems. As of July 2008, there
were nearly 600 million end systems attached to the Internet [ISC 2009], not

1.1« WHAT IS THE INTERNET?

@ National or

Mobile Global ISP

Network ¢
>< >< '

L

Local or
Regional ISP

e

Home Network

Company Network

@®@b$

Host Server Mobile Packet Modem Base Cell Cell phone
(or end system) switch station phone tower

Figure 1.1 ¢ Some pieces of the Internet

3

4

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

counting the cell phones, laptops, and other devices that are only intermittently con-
nected to the Internet.

End systems are connected together by a network of communication links and
packet switches. We’ll see in Section 1.2 that there are many types of communica-
tion links, which are made up of different types of physical media, including coaxial
cable, copper wire, fiber optics, and radio spectrum. Different links can transmit
data at different rates, with the transmission rate of a link measured in bits/second.
When one end system has data to send to another end system, the sending end sys-
tem segments the data and adds header bytes to each segment. The resulting pack-
ages of information, known as packets in the jargon of computer networks, are then
sent through the network to the destination end system, where they are reassembled
into the original data.

A packet switch takes a packet arriving on one of its incoming communication
links and forwards that packet on one of its outgoing communication links. Packet
switches come in many shapes and flavors, but the two most prominent types in
today’s Internet are routers and link-layer switches. Both types of switches for-
ward packets toward their ultimate destinations. Link-layer switches are typically
used in access networks, while routers are typically used in the network core. The
sequence of communication links and packet switches traversed by a packet from
the sending end system to the receiving end system is known as a route or path
through the network. The exact amount of traffic being carried in the Internet is dif-
ficult to estimate [Odylsko 2003]. PriMetrica [PriMetrica 2009] estimates that 10
terabits per second of international capacity was used by public Internet providers
in 2008, and that capacity doubles approximately every two years.

Packet-switched networks (which transport packets) are in many ways similar
to transportation networks of highways, roads, and intersections (which transport
vehicles). Consider, for example, a factory that needs to move a large amount of
cargo to some destination warehouse located thousands of kilometers away. At the
factory, the cargo is segmented and loaded into a fleet of trucks. Each of the trucks
then independently travels through the network of highways, roads, and intersec-
tions to the destination warehouse. At the destination warehouse, the cargo is
unloaded and grouped with the rest of the cargo arriving from the same shipment.
Thus, in many ways, packets are analogous to trucks, communication links are anal-
ogous to highways and roads, packet switches are analogous to intersections, and
end systems are analogous to buildings. Just as a truck takes a path through the
transportation network, a packet takes a path through a computer network.

End systems access the Internet through Internet Service Providers (ISPs),
including residential ISPs such as local cable or telephone companies; corporate
ISPs; university ISPs; and ISPs that provide WiFi access in airports, hotels, coffee
shops, and other public places. Each ISP is in itself a network of packet switches and
communication links. ISPs provide a variety of types of network access to the end
systems, including 56 kbps dial-up modem access, residential broadband access
such as cable modem or DSL, high-speed local area network access, and wireless

1.1« WHAT IS THE INTERNET?

access. ISPs also provide Internet access to content providers, connecting Web sites
directly to the Internet. The Internet is all about connecting end systems to each
other, so the ISPs that provide access to end systems must also be interconnected.
These lower-tier ISPs are interconnected through national and international upper-
tier ISPs such as AT&T and Sprint. An upper-tier ISP consists of high-speed routers
interconnected with high-speed fiber-optic links. Each ISP network, whether upper-
tier or lower-tier, is managed independently, runs the IP protocol (see below), and
conforms to certain naming and address conventions. We’ll examine ISPs and their
interconnection more closely in Section 1.3.

End systems, packet switches, and other pieces of the Internet run protocols
that control the sending and receiving of information within the Internet. The
Transmission Control Protocol (TCP) and the Internet Protocol (IP) are two of
the most important protocols in the Internet. The IP protocol specifies the format of
the packets that are sent and received among routers and end systems. The Internet’s
principal protocols are collectively known as TCP/IP. We’ll begin looking into pro-
tocols in this introductory chapter. But that’s just a start—much of this book is con-
cerned with computer network protocols!

Given the importance of protocols to the Internet, it’s important that everyone
agree on what each and every protocol does. This is where standards come into play.
Internet standards are developed by the Internet Engineering Task Force
(IETF)[IETF 2009]. The IETF standards documents are called requests for com-
ments (RFCs). RFCs started out as general requests for comments (hence the name)
to resolve network and protocol design problems that faced the precursor to the
Internet. RFCs tend to be quite technical and detailed. They define protocols such as
TCP, IP, HTTP (for the Web), and SMTP (for e-mail). There are currently more than
5,000 RFCs. Other bodies also specify standards for network components, most
notably for network links. The IEEE 802 LAN/MAN Standards Committee [IEEE
802 2009], for example, specifies the Ethernet and wireless WiFi standards.

1.1.2 A Services Description

Our discussion above has identified many of the pieces that make up the Internet.
But we can also describe the Internet from an entirely different angle—namely, as
an infrastructure that provides services to applications. These applications include
electronic mail, Web surfing, instant messaging, Voice-over-IP (VoIP), Internet
radio, video streaming, distributed games, peer-to-peer (P2P) file sharing, television
over the Internet, remote login, and much, much more. The applications are said to
be distributed applications, since they involve multiple end systems that exchange
data with each other. Importantly, Internet applications run on end systems—they
do not run in the packet switches in the network core. Although packet switches
facilitate the exchange of data among end systems, they are not concerned with the
application that is the source or sink of data.

5

6

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

Let’s explore a little more what we mean by an infrastructure that provides
services to applications. To this end, suppose you have an exciting new idea for a
distributed Internet application, one that may greatly benefit humanity or one that
may simply make you rich and famous. How might you go about transforming this
idea into an actual Internet application? Because applications run on end systems,
you are going to need to write software pieces that run on the end systems. You
might, for example, write your software pieces in Java, C, or Python. Now, because
you are developing a distributed Internet application, the software pieces running
on the different end systems will need to send data to each other. And here we get
to a central issue—one that leads to the alternative way of describing the Internet
as a platform for applications. How does one application piece running on one end
system instruct the Internet to deliver data to another software piece running on
another end system?

End systems attached to the Internet provide an Application Programming
Interface (API) that specifies how a software piece running on one end system asks
the Internet infrastructure to deliver data to a specific destination software piece run-
ning on another end system. The Internet API is a set of rules that the sending soft-
ware piece must follow so that the Internet can deliver the data to the destination
software piece. We’ll discuss the Internet API in detail in Chapter 2. For now, let’s
draw upon a simple analogy, one that we will frequently use in this book. Suppose
Alice wants to send a letter to Bob using the postal service. Alice, of course, can’t
just write the letter (the data) and drop the letter out her window. Instead, the postal
service requires that Alice put the letter in an envelope; write Bob’s full name,
address, and zip code in the center of the envelope; seal the envelope; put a stamp in
the upper-right-hand corner of the envelope; and finally, drop the envelope into an
official postal service mailbox. Thus, the postal service has its own “postal service
APL” or set of rules, that Alice must follow to have the postal service deliver her
letter to Bob. In a similar manner, the Internet has an API that the software sending
data must follow to have the Internet deliver the data to the software that will
receive the data.

The postal service, of course, provides more than one service to its customers.
It provides express delivery, reception confirmation, ordinary use, and many more
services. In a similar manner, the Internet provides multiple services to its applica-
tions. When you develop an Internet application, you too must choose one of the
Internet’s services for your application. We’ll describe the Internet’s services in
Chapter 2.

This second description of the Internet—an infrastructure for providing serv-
ices to distributed applications—is an important one. Increasingly, advances in the
nuts-and-bolts components of the Internet are being driven by the needs of new
applications. So it’s important to keep in mind that the Internet is an infrastructure
in which new applications are being constantly invented and deployed.

We have just given two descriptions of the Internet; one in terms of its hardware
and software components, the other in terms of an infrastructure for providing

1.1« WHAT IS THE INTERNET?

services to distributed applications. But perhaps you are still confused as to what the
Internet is. What are packet switching, TCP/IP, and an API? What are routers? What
kinds of communication links are present in the Internet? What is a distributed
application? How can a toaster or a weather sensor be attached to the Internet? If
you feel a bit overwhelmed by all of this now, don’t worry—the purpose of this
book is to introduce you to both the nuts and bolts of the Internet and the principles
that govern how and why it works. We’ll explain these important terms and ques-
tions in the following sections and chapters.

1.1.3 What Is a Protocol?

Now that we’ve got a bit of a feel for what the Internet is, let’s consider another
important buzzword in computer networking: protocol. What is a protocol? What
does a protocol do?

A Human Analogy

It is probably easiest to understand the notion of a computer network protocol by
first considering some human analogies, since we humans execute protocols all of
the time. Consider what you do when you want to ask someone for the time of day.
A typical exchange is shown in Figure 1.2. Human protocol (or good manners, at
least) dictates that one first offer a greeting (the first “Hi” in Figure 1.2) to initiate
communication with someone else. The typical response to a “Hi” is a returned “Hi”
message. Implicitly, one then takes a cordial “Hi” response as an indication that one
can proceed and ask for the time of day. A different response to the initial “Hi” (such
as “Don’t bother me!” or “I don’t speak English,” or some unprintable reply) might
indicate an unwillingness or inability to communicate. In this case, the human pro-
tocol would be not to ask for the time of day. Sometimes one gets no response at all
to a question, in which case one typically gives up asking that person for the time.
Note that in our human protocol, there are specific messages we send, and specific
actions we take in response to the received reply messages or other events (such as
no reply within some given amount of time). Clearly, transmitted and received mes-
sages, and actions taken when these messages are sent or received or other events
occur, play a central role in a human protocol. If people run different protocols (for
example, if one person has manners but the other does not, or if one understands the
concept of time and the other does not) the protocols do not interoperate and no use-
ful work can be accomplished. The same is true in networking—it takes two (or
more) communicating entities running the same protocol in order to accomplish a
task.

Let’s consider a second human analogy. Suppose you’re in a college class (a
computer networking class, for example!). The teacher is droning on about proto-
cols and you’re confused. The teacher stops to ask, “Are there any questions?” (a

7

8 CHAPTER 1

Time

j

COMPUTER NETWORKS AND THE INTERNET

e

S

I

!

\

Go
t l‘he t’fne s

200 A\ez

Time Time Time

Figure 1.2 ¢ A human protocol and a computer network protocol

message that is transmitted to, and received by, all students who are not sleeping).
You raise your hand (transmitting an implicit message to the teacher). Your teacher
acknowledges you with a smile, saying “Yes . . .” (a transmitted message encourag-
ing you to ask your question—teachers love to be asked questions), and you then ask
your question (that is, transmit your message to your teacher). Your teacher hears
your question (receives your question message) and answers (transmits a reply to
you). Once again, we see that the transmission and receipt of messages, and a set of
conventional actions taken when these messages are sent and received, are at the
heart of this question-and-answer protocol.

Network Protocols

A network protocol is similar to a human protocol, except that the entities exchang-
ing messages and taking actions are hardware or software components of some
device (for example, computer, PDA, cellphone, router, or other network-capable

1.2« THE NETWORK EDGE

device). All activity in the Internet that involves two or more communicating remote
entities is governed by a protocol. For example, hardware-implemented protocols in
the network interface cards of two physically connected computers control the flow
of bits on the “wire” between the two network interface cards; congestion-control
protocols in end systems control the rate at which packets are transmitted between
sender and receiver; protocols in routers determine a packet’s path from source to
destination. Protocols are running everywhere in the Internet, and consequently
much of this book is about computer network protocols.

As an example of a computer network protocol with which you are probably
familiar, consider what happens when you make a request to a Web server, that is,
when you type the URL of a Web page into your Web browser. The scenario is illus-
trated in the right half of Figure 1.2. First, your computer will send a connection
request message to the Web server and wait for a reply. The Web server will eventu-
ally receive your connection request message and return a connection reply mes-
sage. Knowing that it is now OK to request the Web document, your computer then
sends the name of the Web page it wants to fetch from that Web server in a GET
message. Finally, the Web server returns the Web page (file) to your computer.

Given the human and networking examples above, the exchange of messages
and the actions taken when these messages are sent and received are the key defin-
ing elements of a protocol:

A protocol defines the format and the order of messages exchanged between
two or more communicating entities, as well as the actions taken on the trans-
mission and/or receipt of a message or other event.

The Internet, and computer networks in general, make extensive use of proto-
cols. Different protocols are used to accomplish different communication tasks. As
you read through this book, you will learn that some protocols are simple and
straightforward, while others are complex and intellectually deep. Mastering the
field of computer networking is equivalent to understanding the what, why, and how
of networking protocols.

1.2 The Network Edge

In the previous section we presented a high-level overview of the Internet and net-
working protocols. We are now going to delve a bit more deeply into the compo-
nents of a computer network (and the Internet, in particular). We begin in this
section at the edge of a network and look at the components with which we are most
familiar—namely, the computers, PDAs, cellphones and other devices that we use
on a daily basis. In the next section we’ll move from the network edge to the net-
work core and examine switching and routing in computer networks.

9

10

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

CASE HISTORY

A DIZZYING ARRAY OF INTERNET END SYSTEMS

Not too long ago, the end-system devices connected to the Internet were primarily tradi-
tional computers such as desktop machines and powerful servers. Beginning in the late
1990s and continuing today, a wide range of interesting devices of increasing diversity
are being connected to the Internet. These devices share the common feature of needing
to send and receive digital data to and from other devices. Given the Internet's ubiquity,
its well-defined (standardized) protocols, and the availability of Internetready commodi-
ty hardware, it's natural fo use Internet technology to connect these devices together.

Some of these devices seem fo have been created purely for fun. A desktop IP-
capable picture frame [Ceiva 2009] downloads digital photos from a remote server
and displays them in a device that looks like a traditional picture frame; an Internet
toaster downloads meteorological information from a server and burns an image of
the day’s forecast (e.g., mixed clouds and sun) on your morning foast [BBC 2001].
Other devices provide useful information—Web cams display current traffic and
weather conditions or monitor a location of interest; Internet-connected home appli-
ances (including washing machines, refrigerators, and stoves) have Web browser
interfaces for remote monitoring and control. IPenabled cell phones with GPS
capabilities (such as Apple’s new iPhone) put Web browsing, e-mail, and location-
dependent services at your fingertips. A new class of networked sensor systems
promises to revolutionize how we observe and interact with our environment. Net-
worked sensors that are embedded into the physical environment allow monitoring of
buildings, bridges, seismic activity, wildlife habitats, river estuaries, and the lower
layers of the atmosphere [CENS 2009, CASA 2009]. Biomedical devices can be
embedded and networked, raising numerous security and privacy issues [Halperin
2008]. An RFID tag or a tiny embedded sensor affixed to any object can make infor-
mation about/from that object available on the Internet, leading to an “Internet of
things” [ITU 20035].

Recall from the previous section that in computer networking jargon, the com-
puters and other devices connected to the Internet are often referred to as end sys-
tems. They are referred to as end systems because they sit at the edge of the Internet,
as shown in Figure 1.3. The Internet’s end systems include desktop computers (e.g.,
desktop PCs, Macs, and Linux boxes), servers (e.g., Web and e-mail servers), and
mobile computers (e.g., portable computers, PDAs, and phones with wireless Inter-
net connections). Furthermore, an increasing number of alternative devices are
being attached to the Internet as end systems (see sidebar).

End systems are also referred to as hosts because they host (that is, run) appli-
cation programs such as a Web browser program, a Web server program, an e-mail

1.2« THE NETWORK EDGE

Mobile
Network

U
J @ National or
Global ISP
>

Local or
Regional ISP

Home Network

Company Network

Figure 1.3 ¢ End-system interaction

reader program, or an e-mail server program. Throughout this book we will use the
terms hosts and end systems interchangeably; that is, host = end system. Hosts are
sometimes further divided into two categories: clients and servers. Informally,
clients tend to be desktop and mobile PCs, PDAs, and so on, whereas servers tend

12

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

to be more powerful machines that store and distribute Web pages, stream video,
relay e-mail, and so on.

1.2.1 Client and Server Programs

In the context of networking software, there is another definition of a client and
server, a definition that we’ll refer to throughout this book. A client program is a
program running on one end system that requests and receives a service from a
server program running on another end system. The Web, e-mail, file transfer,
remote login, newsgroups, and many other popular applications adopt the client-
server model. Since a client program typically runs on one computer and the server
program runs on another computer, client-server Internet applications are, by defi-
nition, distributed applications. The client program and the server program
interact by sending each other messages over the Internet. At this level of abstrac-
tion, the routers, links, and other nuts and bolts of the Internet serve collectively as
a black box that transfers messages between the distributed, communicating
components of an Internet application. This is the level of abstraction depicted in
Figure 1.3.

Not all Internet applications today consist of pure client programs interacting
with pure server programs. Increasingly, many applications are peer-to-peer (P2P)
applications, in which end systems interact and run programs that perform both
client and server functions. For example, in P2P file-sharing applications (such as
BitTorrent and eMule), the program in the user’s end system acts as a client when it
requests a file from another peer; and the program acts as a server when it sends a
file to another peer. In Internet telephony, the two communicating parties interact as
peers—the communication session is symmetric, with both parties sending and
receiving data. We’ll compare and contrast client-server and P2P architectures in
detail in Chapter 2.

1.2.2 Access Networks

Having considered the applications and end systems at the “edge of the network,”
let’s next consider access networks—the physical links that connect an end system
to the first router (also known as the “edge router”) on a path from the end system to
any other distant end system. Figure 1.4 shows several types of access links from
end system to edge router; the access links are highlighted in thick, shaded lines.
This section surveys many of the most common access network technologies,
roughly from low speed to high speed.

We’ll soon see that many of the access technologies employ, to varying degrees,
portions of the traditional local wired telephone infrastructure. The local wired tele-
phone infrastructure is provided by a local telephone provider, which we will simply
refer to as the local telco. Examples of local telcos include Verizon in the United States

1.2« THE NETWORK EDGE 13

National or
Global ISP

= S
¢/
. N

Mobile
Network

Local or

‘ B [- Regional ISP
us e
W@ -
a1 =

Home Network

x

>
= =g |
BB
==

—t

—

Company Network

Figure 1.4 ¢ Access networks

14

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

and France Telecom in France. Each residence (household and apartment) has a
direct, twisted-pair cooper link to a nearby telco switch, which is housed in a build-
ing called the central office (CO) in telephony jargon. (We will discuss twisted-pair
cooper wire later in this section.) A local telco will typically own hundreds of COs,
and will link each of its customers to its nearest CO.

Dial-Up

Back in the 1990s, almost all residential users accessed the Internet over ordinary
analog telephone lines using a dial-up modem. Today, many users in underdevel-
oped countries and in rural areas in developed countries (where broadband access is
unavailable) still access the Internet via dial-up. In fact, it is estimated that 10% of
residential users in the United States used dial-up in 2008 [Pew 2008].

The term “dial-up” is employed because the user’s software actually dials an
ISP’s phone number and makes a traditional phone connection with the ISP (e.g.,
with AOL). As shown in Figure 1.5, the PC is attached to a dial-up modem, which is
in turn attached to the home’s analog phone line. This analog phone line is made of
twisted-pair copper wire and is the same telephone line used to make ordinary phone
calls. The home modem converts the digital output of the PC into an analog format
appropriate for transmission over the analog phone line. At the other end of the con-
nection, a modem in the ISP converts the analog signal back into digital form for
input to the ISP’s router.

Dial-up Internet access has two major drawbacks. First and foremost, it is
excruciatingly slow, providing a maximum rate of 56 kbps. At a 56 kbps, it takes
approximately eight minutes to download a single three-minute MP3 song and sev-
eral days to download a 1 Gbyte movie! Second, dial-up modem access ties up a
user’s ordinary phone line—while one family member uses a dial-up modem to surf

Central
office

Telephone
network

Internet

ISP modem
(e.g., AOL)

Home PC Home
dial-up
modem

Key: O

Circuit
switch

Figure 1.5 ¢ Dial-up Internet access

1.2« THE NETWORK EDGE

the Web, other family members cannot receive and make ordinary phone calls over
the phone line.

DSL

Today the two most prevalent types of broadband residential access are digital sub-
scriber line (DSL) and cable. In most developed countries today, more than 50% of
the households have broadband access, with South Korea, Iceland, Netherlands,
Denmark, and Switzerland leading the way with more than 74% penetration in
households as of 2008 [ITIF 2008]. In the United States, DSL and cable have about
the same market share for broadband access [Pew 2008]. Outside the United States
and Canada, DSL dominates, particularly in Europe where more than 90% of the
broadband connections are DSL in many countries.

A residence typically obtains DSL Internet access from the same company that
provides it wired local phone access (i.e., the local telco). Thus, when DSL is used,
a customer’s telco is also its ISP. As shown in Figure 1.6, each customer’s DSL
modem uses the existing telephone line (twisted-pair copper wire) to exchange data
with a digital subscriber line access multiplexer (DSLAM), typically located in the
telco’s CO. The telephone line carries simultaneously both data and telephone sig-
nals, which are encoded at different frequencies:

* A high-speed downstream channel, in the 50 kHz to 1 MHz band
* A medium-speed upstream channel, in the 4 kHz to 50 kHz band

* An ordinary two-way telephone channel, in the O to 4 kHz band

This approach makes the single DSL link appear as if there were three separate
links, so that a telephone call and an Internet connection can share the DSL link at

Internet

Existing phone line:
0-4KHz phone; 4-50KHz

upstream data; 50KHz- ?
1MHz downstream data DSLAM

Splitter Telephone

Central network

office

Figure 1.6 ¢ DSL Internet access

15

16

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

the same time. (We’ll describe this technique of frequency-division multiplexing in
Section 1.3.1). On the customer side, for the signals arriving to the home, a splitter
separates the data and telephone signals and forwards the data signal to the DSL
modem. On the telco side, in the CO, the DSLAM separates the data and phone sig-
nals and sends the data into the Internet. Hundreds or even thousands of households
connect to a single DSLAM [Cha 2009, Dischinger 2007].

DSL has two major advantages over dial-up Internet access. First, it can transmit
and receive data at much higher rates. Typically, a DSL customer will have a trans-
mission rate in the 1 to 2 Mbps range for downstream (CO to residence) and in the
128 kbps to 1 Mbps range for upstream. Because the downstream and upstream rates
are different, the access is said to be asymmetric. The second major advantage is that
users can simultaneously talk on the phone and access the Internet. Unlike dial-up,
users do not dial an ISP phone number to get Internet access; instead, they have an
“always-on” permanent connection to the ISP’s DSLAM (and hence to the Internet).

The actual downstream and upstream transmission rate available to the residence
is a function of the distance between the home and the CO, the gauge of the twisted-
pair line and the degree of electrical interference. Engineers have expressly designed
DSL for short distances between the home and the CO, allowing for substantially
higher transmission rates than dial-up access. To boost the data rates, DSL relies on
advanced signal processing and error correction algorithms, which can lead to high
packet delays. However, if the residence is not located within 5 to 10 miles of the CO,
DSL signal-processing technology is no longer effective, and the residence must
resort to an alternative form of Internet access.

There are also a variety of higher-speed DSL technologies enjoying penetration
in a handful of countries today. For example, very-high speed DSL (VDSL), with
highest penetration today in South Korea and Japan, provides impressive rates of 12
to 55 Mbps for downstream and 1.6 to 20 Mbps for upstream [DSL 2009].

Cable

Many residences in the North America and elsewhere receive hundreds of broadcast
television channels over coaxial cable networks. (We will discuss coaxial cable later
in this section.) In a traditional cable television system, a cable head end broadcasts
television channels through a distribution network of coaxial cable and amplifiers to
residences.

While DSL and dial-up make use of the telco’s existing local telephone infrastruc-
ture, cable Internet access makes use the cable television company’s existing cable tel-
evision infrastructure. A residence obtains cable Internet access from the same
company that provides it cable television. As illustrated in Figure 1.7, fiber optics con-
nect the cable head end to neighborhood-level junctions, from which traditional coax-
ial cable is then used to reach individual houses and apartments. Each neighborhood
junction typically supports 500 to 5,000 homes. Because both fiber and coaxial cable
are employed in this system, it is often referred to as hybrid fiber coax (HFC).

1.2« THE NETWORK EDGE

Coaxial cable
Hundreds ‘

of homes Fib;:r
! 7 node Fiber cable

Head end

Hundreds .
of homes Fiber
| |/ node

Figure 1.7 ¢ A hybrid fiber-coaxial access network

Cable Internet access requires special modems, called cable modems. As with
a DSL modem, the cable modem is typically an external device and connects to the
home PC through an Ethernet port. (We will discuss Ethernet in great detail in Chap-
ter 5.) Cable modems divide the HFC network into two channels, a downstream and
an upstream channel. As with DSL, access is typically asymmetric, with the down-
stream channel typically allocated at a higher transmission rate than the upstream
channel.

One important characteristic of cable Internet access is that it is a shared broad-
cast medium. In particular, every packet sent by the head end travels downstream on
every link to every home; and every packet sent by a home travels on the upstream
channel to the head end. For this reason, if several users are simultaneously down-
loading a video file on the downstream channel, the actual rate at which each user
receives its video file will be significantly lower than the aggregate cable down-
stream rate. On the other hand, if there are only a few active users and they are all
Web surfing, then each of the users may actually receive Web pages at the full cable
downstream rate, because the users will rarely request a Web page at exactly the
same time. Because the upstream channel is also shared, a distributed multiple-
access protocol is needed to coordinate transmissions and avoid collisions. (We’ll
discuss this collision issue in some detail when we discuss Ethernet in Chapter 5.)

Advocates of DSL are quick to point out that DSL is a point-to-point connec-
tion between the home and ISP, and therefore, the entire transmission capacity of
the DSL link between the home and the ISP is dedicated rather than shared. Cable
advocates, however, argue that a reasonably dimensioned HFC network provides

17

18

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

higher transmission rates than DSL. The battle between DSL and HFC for high-
speed residential access is raging, particularly in North America. In rural areas,
where neither DSL nor HFC is available, a satellite link can be used to connect a res-
idence to the Internet at speeds of more than 1 Mbps; StarBand and HughesNet are
two such satellite access providers.

Fiber-To-The-Home (FTTH)

Fiber optics (to be discussed in Section 1.2.3) can offer significantly higher trans-
mission rates than twisted-pair copper wire or coaxial cable. Some local telcos (in
many different countries), having recently laid optical fiber from their COs to
homes, now provide high-speed Internet access as well as traditional phone and tel-
evision services over the optical fibers. In the United States, Verizon has been par-
ticularly aggressive with FTTH with its FIOS service [Verizon FIOS 2009].

There are several competing technologies for optical distribution from the
CO to the homes. The simplest optical distribution network is called direct
fiber, for which there is one fiber leaving the CO for each home. Such distribu-
tion can provide high bandwidth, since each customer gets its own dedicated
fiber all the way to the central office. More commonly, each fiber leaving the
central office is actually shared by many homes; it is not until the fiber gets rel-
atively close to the homes that it is split into individual customer-specific fibers.
There are two competing optical-distribution network architectures that perform
this splitting: active optical networks (AONs) and passive optical networks
(PONSs). AON is essentially switched Ethernet, which is discussed in Chapter 5.
Here we briefly discuss PON, which is used in Verizon’s FIOS service. Figure
1.8 shows FTTH using the PON distribution architecture. Each home has an
optical network terminator (ONT), which is connected by dedicated optical
fibter to a neighborhood splitter. The splitter combines a number of homes (typ-
ically less than 100) onto a single, shared optical fiber, which connects to an
optical line terminator (OLT) in the telco’s CO. The OLT, providing conversion
between optical and electrical signals, connects to the Internet via a telco router.
In the home, users connect a home router (typically a wireless router) to the
ONT and access the Internet via this home router. In the PON architecture, all
packets sent from OLT to the splitter are replicated at the splitter (similar to a
cable head end).

FTTH can potentially provide Internet access rates in the gigabits per second
range. However, most FTTH ISPs provide different rate offerings, with the higher
rates naturally costing more money. Most FTTH customers today enjoy download
rates in the 10 to 20 Mbps range and upload rates in the 2 to 10 Mbps range. In addi-
tion to Internet access, the optical fibers carry broadcast television services and tra-
ditional phone service.

1.2

Internet

Central offlce\

Optical
splitter

e \\ oLt

Optical

ONT fibers

Figure 1.8 ¢ FTTH Internet access

Ethernet

THE NETWORK EDGE

On corporate and university campuses, a local area network (LAN) is typically used
to connect an end system to the edge router. Although, there are many types of LAN
technologies, Ethernet is by far the most prevalent access technology in corporate
and university networks. As shown in Figure 1.9, Ethernet users use twisted-pair
copper wire to connect to an Ethernet switch, a technology discussed in detail in
Chapter 5. With Ethernet access, users typically have 100 Mbps access, whereas

servers may can have 1 Gbps or even 10 Gbps access.

Ethernet Institutional
100 Mbps switch router

To Institution’s
ISP

Server

Figure 1.9 ¢ Ethernet Internet access

19

20

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

WiFi

Increasingly, people access the Internet wirelessly, either through a laptop computer
or from a mobile handheld device, such as an iPhone, Blackberry, or Google phone
(see earlier sidebar on A Dizzying Array of Internet End Systems). Today, there are
two common types of wireless Internet access. In a wireless LAN, wireless users
transmit/receive packets to/from an access point that in turn is connected to the
wired Internet. A wireless LAN user must typically be within a few tens of meters
of the access point. In wide-area wireless access networks, packets are transmitted
to a base station over the same wireless infrastructure used for cellular telephony.
In this case, the base station is managed by the cellular network provider and a user
must typically be within a few tens of kilometers of the base station.

Wireless LAN access based on IEEE 802.11 technology, that is WiFi, is now
just about everywhere—universities, business offices, cafes, airports, homes, and
even in airplanes. Most universities have installed IEEE 802.11 base stations
across their entire campus, allowing students to send and receive e-mail or surf
the Web from anywhere on campus. In many cities, one can stand on a street cor-
ner and be within range of ten or twenty base stations (for a browseable global
map of 802.11 base stations that have been discovered and logged on a Web site
by people who take great enjoyment in doing such things, see [wigle.net 2009]).
As discussed in detail in Chapter 6, 802.11 today provides a shared transmission
rate of up to 54 Mbps.

Many homes combine broadband residential access (that is, cable modems or
DSL) with inexpensive wireless LAN technology to create powerful home net-
works. Figure 1.10 shows a schematic of a typical home network. This home
network consists of a roaming laptop as well as a wired PC; a base station (the wire-
less access point), which communicates with the wireless PC; a cable modem, pro-
viding broadband access to the Internet; and a router, which interconnects the base
station and the stationary PC with the cable modem. This network allows household
members to have broadband access to the Internet with one member roaming from
the kitchen to the backyard to the bedrooms.

Wide-Area Wireless Access

When you access the Internet through wireless LAN technology, you typically need
to be within a few tens of meters of the access point. This is feasible for home
access, coffee shop access, and more generally, access within and around a building.
But what if you are on the beach, on a bus, or in your car, and you need Internet
access? For such wide-area access, roaming Internet users make use of the cellular
phone infrastructure, accessing base stations that are up to tens of kilometers away.
Telecommunications companies have made enormous investments in so-called
third generation (3G) wireless, which provides packet-switched wide-area wireless

1.2« THE NETWORK EDGE

;> Cable =«

>
Internet
head end

Figure 1.10 ¢ A schematic of a typical home network

Internet access at speeds in excess of 1 Mbps. Today millions of users are using
these networks to read and send email, surf the Web, and download music while on
the run.

WiMAX

As always, there is a potential “killer” technology waiting to dethrone these stan-
dards. WiMAX [Intel WiIMAX 2009, WiMAX Forum 2009], also known as IEEE
802.16, is a long-distance cousin of the 802.11 WiFi protocol discussed above.
WiMAX operates independently of the cellular network and promises speeds of 5 to
10 Mbps or higher over distances of tens of kilometers. Sprint-Nextel has commit-
ted billions of dollars towards deploying WiMAX in 2007 and beyond. We’ll cover
WiFi, WiMAX, and 3G in detail in Chapter 6.

1.2.3 Physical Media

In the previous subsection, we gave an overview of some of the most important net-
work access technologies in the Internet. As we described these technologies, we
also indicated the physical media used. For example, we said that HFC uses a com-
bination of fiber cable and coaxial cable. We said that dial-up 56 kbps modems and
DSL use twisted-pair copper wire. And we said that mobile access networks use the

21

22

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

radio spectrum. In this subsection we provide a brief overview of these and other
transmission media that are commonly used in the Internet.

In order to define what is meant by a physical medium, let us reflect on the
brief life of a bit. Consider a bit traveling from one end system, through a series of
links and routers, to another end system. This poor bit gets kicked around and
transmitted many, many times! The source end system first transmits the bit, and
shortly thereafter the first router in the series receives the bit; the first router then
transmits the bit, and shortly thereafter the second router receives the bit; and so
on. Thus our bit, when traveling from source to destination, passes through a series
of transmitter-receiver pairs. For each transmitter-receiver pair, the bit is sent by
propagating electromagnetic waves or optical pulses across a physical medium.
The physical medium can take many shapes and forms and does not have to be of
the same type for each transmitter-receiver pair along the path. Examples of physi-
cal media include twisted-pair copper wire, coaxial cable, multimode fiber-optic
cable, terrestrial radio spectrum, and satellite radio spectrum. Physical media fall
into two categories: guided media and unguided media. With guided media, the
waves are guided along a solid medium, such as a fiber-optic cable, a twisted-pair
copper wire, or a coaxial cable. With unguided media, the waves propagate in the
atmosphere and in outer space, such as in a wireless LAN or a digital satellite
channel.

But before we get into the characteristics of the various media types, let us say
a few words about their costs. The actual cost of the physical link (copper wire,
fiber-optic cable, and so on) is often relatively minor compared with other network-
ing costs. In particular, the labor cost associated with the installation of the physical
link can be orders of magnitude higher than the cost of the material. For this reason,
many builders install twisted pair, optical fiber, and coaxial cable in every room in a
building. Even if only one medium is initially used, there is a good chance that
another medium could be used in the near future, and so money is saved by not hav-
ing to lay additional wires in the future.

Twisted-Pair Copper Wire

The least expensive and most commonly used guided transmission medium is
twisted-pair copper wire. For over a hundred years it has been used by telephone
networks. In fact, more than 99 percent of the wired connections from the tele-
phone handset to the local telephone switch use twisted-pair copper wire. Most of
us have seen twisted pair in our homes and work environments. Twisted pair con-
sists of two insulated copper wires, each about 1 mm thick, arranged in a regular
spiral pattern. The wires are twisted together to reduce the electrical interference
from similar pairs close by. Typically, a number of pairs are bundled together in a
cable by wrapping the pairs in a protective shield. A wire pair constitutes a single
communication link. Unshielded twisted pair (UTP) is commonly used for

1.2« THE NETWORK EDGE

computer networks within a building, that is, for LANs. Data rates for LANs
using twisted pair today range from 10 Mbps to 1 Gbps. The data rates that can
be achieved depend on the thickness of the wire and the distance between trans-
mitter and receiver.

When fiber-optic technology emerged in the 1980s, many people disparaged
twisted pair because of its relatively low bit rates. Some people even felt that fiber-
optic technology would completely replace twisted pair. But twisted pair did not
give up so easily. Modern twisted-pair technology, such as category 5 UTP, can
achieve data rates of 1 Gbps for distances up to a hundred meters. In the end, twisted
pair has emerged as the dominant solution for high-speed LAN networking.

As discussed earlier, twisted pair is also commonly used for residential Internet
access. We saw that dial-up modem technology enables access at rates of up to 56
kbps over twisted pair. We also saw that DSL (digital subscriber line) technology
has enabled residential users to access the Internet at rates in excess of 6 Mbps over
twisted pair (when users live close to the ISP’s modem).

Coaxial Cable

Like twisted pair, coaxial cable consists of two copper conductors, but the two con-
ductors are concentric rather than parallel. With this construction and special insula-
tion and shielding, coaxial cable can have high bit rates. Coaxial cable is quite
common in cable television systems. As we saw earlier, cable television systems
have recently been coupled with cable modems to provide residential users with
Internet access at rates of 1 Mbps or higher. In cable television and cable Internet
access, the transmitter shifts the digital signal to a specific frequency band, and the
resulting analog signal is sent from the transmitter to one or more receivers. Coaxial
cable can be used as a guided shared medium. Specifically, a number of end sys-
tems can be connected directly to the cable, with each of the end systems receiving
whatever is sent by the other end systems.

Fiber Optics

An optical fiber is a thin, flexible medium that conducts pulses of light, with each
pulse representing a bit. A single optical fiber can support tremendous bit rates, up
to tens or even hundreds of gigabits per second. They are immune to electromag-
netic interference, have very low signal attenuation up to 100 kilometers, and are
very hard to tap. These characteristics have made fiber optics the preferred long-
haul guided transmission media, particularly for overseas links. Many of the long-
distance telephone networks in the United States and elsewhere now use fiber optics
exclusively. Fiber optics is also prevalent in the backbone of the Internet. However,
the high cost of optical devices—such as transmitters, receivers, and switches—has
hindered their deployment for short-haul transport, such as in a LAN or into the

23

24

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

home in a residential access network. The Optical Carrier (OC) standard link speeds
range from 51.8 Mbps to 39.8 Gbps; these specifications are often referred to as
OC-n, where the link speed equals n X 51.8 Mbps. Standards in use today include
OC-1, OC-3, OC-12, OC-24, OC-48, OC-96, OC-192, OC-768. [IEC Optical
2009; Goralski 2001; Ramaswami 1998; and Mukherjee 1997] provide coverage of
various aspects of optical networking.

Terrestrial Radio Channels

Radio channels carry signals in the electromagnetic spectrum. They are an attrac-
tive medium because they require no physical wire to be installed, can penetrate
walls, provide connectivity to a mobile user, and can potentially carry a signal for
long distances. The characteristics of a radio channel depend significantly on the
propagation environment and the distance over which a signal is to be carried.
Environmental considerations determine path loss and shadow fading (which
decrease the signal strength as the signal travels over a distance and
around/through obstructing objects), multipath fading (due to signal reflection off
of interfering objects), and interference (due to other transmissions and electro-
magnetic signals).

Terrestrial radio channels can be broadly classified into two groups: those that
operate in local areas, typically spanning from ten to a few hundred meters; and
those that operate in the wide area, spanning tens of kilometers. The wireless LAN
technologies described in Section 1.2.2 use local-area radio channels; the cellular
access technologies use wide-area radio channels. We’ll discuss radio channels in
detail in Chapter 6.

Satellite Radio Channels

A communication satellite links two or more Earth-based microwave transmitter/
receivers, known as ground stations. The satellite receives transmissions on one fre-
quency band, regenerates the signal using a repeater (discussed below), and transmits
the signal on another frequency. Two types of satellites are used in communications:
geostationary satellites and low-earth orbiting (LEO) satellites.

Geostationary satellites permanently remain above the same spot on Earth. This
stationary presence is achieved by placing the satellite in orbit at 36,000 kilometers
above Earth’s surface. This huge distance from ground station through satellite back
to ground station introduces a substantial signal propagation delay of 280 millisec-
onds. Nevertheless, satellite links, which can operate at speeds of hundreds of Mbps,
are often used in areas without access to DSL or cable-based Internet access.

LEO satellites are placed much closer to Earth and do not remain permanently
above one spot on Earth. They rotate around Earth (just as the Moon does) and may
communicate with each other, as well as with ground stations. To provide continu-

1.3 « THE NETWORK CORE

ous coverage to an area, many satellites need to be placed in orbit. There are cur-
rently many low-altitude communication systems in development. Lloyd’s satellite
constellations Web page [Wood 2009] provides and collects information on satellite
constellation systems for communications. LEO satellite technology may be used
for Internet access sometime in the future.

1.3 The Network Core

Having examined the Internet’s edge, let us now delve more deeply inside the net-
work core—the mesh of packet switches and links that interconnects the Internet’s
end systems. Figure 1.11 highlights the network core with thick, shaded lines.

1.3.1 Circuit Switching and Packet Switching

There are two fundamental approaches to moving data through a network of links
and switches: circuit switching and packet switching. In circuit-switched net-
works, the resources needed along a path (buffers, link transmission rate) to provide
for communication between the end systems are reserved for the duration of the
communication session between the end-systems. In packet-switched networks,
these resources are not reserved; a session’s messages use the resources on demand,
and as a consequence, may have to wait (that is, queue) for access to a communica-
tion link. As a simple analogy, consider two restaurants, one that requires reserva-
tions and another that neither requires reservations nor accepts them. For the
restaurant that requires reservations, we have to go through the hassle of calling
before we leave home. But when we arrive at the restaurant we can, in principle,
immediately communicate with the waiter and order our meal. For the restaurant
that does not require reservations, we don’t need to bother to reserve a table. But
when we arrive at the restaurant, we may have to wait for a table before we can
communicate with the waiter.

The ubiquitous telephone networks are examples of circuit-switched networks.
Consider what happens when one person wants to send information (voice or fac-
simile) to another over a telephone network. Before the sender can send the infor-
mation, the network must establish a connection between the sender and the
receiver. This is a bona fide connection for which the switches on the path between
the sender and receiver maintain connection state for that connection. In the jargon
of telephony, this connection is called a circuit. When the network establishes the
circuit, it also reserves a constant transmission rate in the network’s links for the
duration of the connection. Since bandwidth has been reserved for this sender-to-
receiver connection, the sender can transfer the data to the receiver at the guaranteed
constant rate.

25

26 CHAPTER 1T = COMPUTER NETWORKS AND THE INTERNET

n 8

J
National or

e Global ISP

Mobile
Network

>
o e
o=
1 Local or
Regional ISP
Y Q =
= ><
u= .
=S

Home Network

= /[<)
E
E B
— ===

Company Network

Figure 1.11 ¢ The network core

1.3 « THE NETWORK CORE

Today’s Internet is a quintessential packet-switched network. Consider what
happens when one host wants to send a packet to another host over the Internet. As
with circuit switching, the packet is transmitted over a series of communication
links. But with packet switching, the packet is sent into the network without reserv-
ing any bandwidth whatsoever. If one of the links is congested because other pack-
ets need to be transmitted over the link at the same time, then our packet will have
to wait in a buffer at the sending side of the transmission link, and suffer a delay.
The Internet makes its best effort to deliver packets in a timely manner, but it does
not make any guarantees.

Not all telecommunication networks can be neatly classified as pure circuit-
switched networks or pure packet-switched networks. Nevertheless, this fundamen-
tal classification into packet- and circuit-switched networks is an excellent starting
point in understanding telecommunication network technology.

Circuit Switching

This book is about computer networks, the Internet, and packet switching, not about
telephone networks and circuit switching. Nevertheless, it is important to under-
stand why the Internet and other computer networks use packet switching rather
than the more traditional circuit-switching technology used in the telephone net-
works. For this reason, we now give a brief overview of circuit switching.

Figure 1.12 illustrates a circuit-switched network. In this network, the four cir-
cuit switches are interconnected by four links. Each of these links has » circuits, so
that each link can support n simultaneous connections. The hosts (for example, PCs
and workstations) are each directly connected to one of the switches. When two
hosts want to communicate, the network establishes a dedicated end-to-end con-
nection between the two hosts. (Conference calls between more than two devices
are, of course, also possible. But to keep things simple, let’s suppose for now that
there are only two hosts for each connection.) Thus, in order for Host A to send mes-
sages to Host B, the network must first reserve one circuit on each of two links.
Because each link has n circuits, for each link used by the end-to-end connection,
the connection gets a fraction 1/n of the link’s bandwidth for the duration of the con-
nection.

Multiplexing in Circuit-Switched Networks

A circuit in a link is implemented with either frequency-division multiplexing
(FDM) or time-division multiplexing (TDM). With FDM, the frequency spec-
trum of a link is divided up among the connections established across the link.
Specifically, the link dedicates a frequency band to each connection for the
duration of the connection. In telephone networks, this frequency band typically
has a width of 4 kHz (that is, 4,000 hertz or 4,000 cycles per second). The width

27

28 CHAPTER 1T o COMPUTER NETWORKS AND THE INTERNET

Each link consists — End-to-end connection
of n “circuits” between Hosts A and B, using
(TDM or FDM) —— one “circuit” in each of the links

- / Host B
B

Figure 1.12 ¢ A simple circuit-switched network consisting of four
switches and four links

of the band is called, not surprisingly, the bandwidth. FM radio stations also use
FDM to share the frequency spectrum between 88 MHz and 108 MHz, with each
station being allocated a specific frequency band.

For a TDM link, time is divided into frames of fixed duration, and each frame
is divided into a fixed number of time slots. When the network establishes a connec-
tion across a link, the network dedicates one time slot in every frame to this connec-
tion. These slots are dedicated for the sole use of that connection, with one time slot
available for use (in every frame) to transmit the connection’s data.

Figure 1.13 illustrates FDM and TDM for a specific network link supporting up
to four circuits. For FDM, the frequency domain is segmented into four bands, each
of bandwidth 4 kHz. For TDM, the time domain is segmented into frames, with four
time slots in each frame; each circuit is assigned the same dedicated slot in the
revolving TDM frames. For TDM, the transmission rate of a circuit is equal to the
frame rate multiplied by the number of bits in a slot. For example, if the link trans-
mits 8,000 frames per second and each slot consists of 8 bits, then the transmission
rate of a circuit is 64 kbps.

Proponents of packet switching have always argued that circuit switching is
wasteful because the dedicated circuits are idle during silent periods. For example,
when one person in a telephone call stops talking, the idle network resources (fre-
quency bands or time slots in the links along the connection’s route) cannot be used
by other ongoing connections. As another example of how these resources can be

1.3 « THE NETWORK CORE

4KHz {
4KHz {

—Link : Frequency

TDM

112 (314|123 (4|1]2|3(4|1(2]|3(4

T T
Slot Frame

Time
Key:

% All slots labeled “2" are dedicated
to a specific sender-receiver pair.
Figure 1.13 ¢ With FDM, each circuit continuously gets a fraction

of the bandwidth. With TDM, each circuit gets all of the bandwidth

periodically during brief intervals of time (that is, during slots).

underutilized, consider a radiologist who uses a circuit-switched network to
remotely access a series of x-rays. The radiologist sets up a connection, requests an
image, contemplates the image, and then requests a new image. Network resources
are allocated to the connection but are not used (i.e., are wasted) during the radiolo-
gist’s contemplation periods. Proponents of packet switching also enjoy pointing out
that establishing end-to-end circuits and reserving end-to-end bandwidth is compli-
cated and requires complex signaling software to coordinate the operation of the
switches along the end-to-end path.

Before we finish our discussion of circuit switching, let’s work through a
numerical example that should shed further insight on the topic. Let us consider how
long it takes to send a file of 640,000 bits from Host A to Host B over a circuit-
switched network. Suppose that all links in the network use TDM with 24 slots and
have a bit rate of 1.536 Mbps. Also suppose that it takes 500 msec to establish an
end-to-end circuit before Host A can begin to transmit the file. How long does it take
to send the file? Each circuit has a transmission rate of (1.536 Mbps)/24 = 64 kbps,
so it takes (640,000 bits)/(64 kbps) = 10 seconds to transmit the file. To this 10 sec-
onds we add the circuit establishment time, giving 10.5 seconds to send the file.
Note that the transmission time is independent of the number of links: The transmis-
sion time would be 10 seconds if the end-to-end circuit passed through one link or a
hundred links. (The actual end-to-end delay also includes a propagation delay; see
Section 1.4.)

29

30

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

Packet Switching

Distributed applications exchange messages in accomplishing their task. Messages
can contain anything the protocol designer wants. Messages may perform a control
function (for example, the “Hi”” messages in our handshaking example) or can con-
tain data, such as an e-mail message, a JPEG image, or an MP3 audio file. In mod-
ern computer networks, the source breaks long messages into smaller chunks of data
known as packets. Between source and destination, each of these packets travels
through communication links and packet switches (for which there are two pre-
dominant types, routers and link-layer switches). Packets are transmitted over each
communication link at a rate equal to the full transmission rate of the link.

Most packet switches use store-and-forward transmission at the inputs to the
links. Store-and-forward transmission means that the switch must receive the entire
packet before it can begin to transmit the first bit of the packet onto the outbound link.
Thus store-and-forward packet switches introduce a store-and-forward delay at the
input to each link along the packet’s route. Consider how long it takes to send a packet
of L bits from one host to another host across a packet-switched network. Let’s sup-
pose that there are Q links between the two hosts, each of rate R bps. Assume that this
is the only packet in the network. The packet must first be transmitted onto the first
link emanating from Host A; this takes L/R seconds. It must then be transmitted on
each of the Q — 1 remaining links; that is, it must be stored and forwarded Q — 1 times,
each time with a store-and-forward delay of L/R. Thus the total delay is QL/R.

Each packet switch has multiple links attached to it. For each attached link, the
packet switch has an output buffer (also called an output queue), which stores
packets that the router is about to send into that link. The output buffers play a key
role in packet switching. If an arriving packet needs to be transmitted across a link
but finds the link busy with the transmission of another packet, the arriving packet
must wait in the output buffer. Thus, in addition to the store-and-forward delays,
packets suffer output buffer queuing delays. These delays are variable and depend
on the level of congestion in the network. Since the amount of buffer space is finite,
an arriving packet may find that the buffer is completely filled with other packets
waiting for transmission. In this case, packet loss will occur—either the arriving
packet or one of the already-queued packets will be dropped. Returning to our
restaurant analogy from earlier in this section, the queuing delay is analogous to the
amount of time you spend waiting at the restaurant’s bar for a table to become free.
Packet loss is analogous to being told by the waiter that you must leave the prem-
ises because there are already too many other people waiting at the bar for a table.

Figure 1.14 illustrates a simple packet-switched network. In this and subsequent
figures, packets are represented by three-dimensional slabs. The width of a slab rep-
resents the number of bits in the packet. In this figure, all packets have the same
width and hence the same length. Suppose Hosts A and B are sending packets to
Host E. Hosts A and B first send their packets along 10 Mbps Ethernet links to the
first packet switch. The packet switch then directs these packets to the 1.5 Mbps

1.3 « THE NETWORK CORE

10 Mbps Ethernet
Statistical
multiplexing

Queue of
packets waiting
for output link

Key: D E

. . Packets

Figure 1.14 ¢ Packet switching

link. If the arrival rate of packets to the switch exceeds the rate at which the switch
can forward packets across the 1.5 Mbps output link, congestion will occur as pack-
ets queue in the link’s output buffer before being transmitted onto the link. We’ll
examine this queuing delay in more detail in Section 1.4.

Packet Switching Versus Circuit Switching: Statistical Multiplexing

Having described circuit switching and packet switching, let us compare the two.
Critics of packet switching have often argued that packet switching is not suitable
for real-time services (for example, telephone calls and video conference calls)
because of its variable and unpredictable end-to-end delays (due primarily to vari-
able and unpredictable queuing delays). Proponents of packet switching argue that
(1) it offers better sharing of bandwidth than circuit switching and (2) it is simpler,
more efficient, and less costly to implement than circuit switching. An interesting
discussion of packet switching versus circuit switching is [Molinero-Fernandez
2002]. Generally speaking, people who do not like to hassle with restaurant reserva-
tions prefer packet switching to circuit switching.

Why is packet switching more efficient? Let’s look at a simple example. Sup-
pose users share a 1 Mbps link. Also suppose that each user alternates between peri-
ods of activity, when a user generates data at a constant rate of 100 kbps, and periods
of inactivity, when a user generates no data. Suppose further that a user is active
only 10 percent of the time (and is idly drinking coffee during the remaining 90 per-
cent of the time). With circuit switching, 100 kbps must be reserved for each user at
all times. For example, with circuit-switched TDM, if a one-second frame is divided

31

32

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

into 10 time slots of 100 ms each, then each user would be allocated one time slot
per frame.

Thus, the circuit-switched link can support only 10 (= 1 Mbps/100 kbps) simul-
taneous users. With packet switching, the probability that a specific user is active is
0.1 (that is, 10 percent). If there are 35 users, the probability that there are 11 or
more simultaneously active users is approximately 0.0004. (Homework Problem P7
outlines how this probability is obtained.) When there are 10 or fewer simultane-
ously active users (which happens with probability 0.9996), the aggregate arrival
rate of data is less than or equal to 1 Mbps, the output rate of the link. Thus, when
there are 10 or fewer active users, users’ packets flow through the link essentially
without delay, as is the case with circuit switching. When there are more than 10
simultaneously active users, then the aggregate arrival rate of packets exceeds the
output capacity of the link, and the output queue will begin to grow. (It continues to
grow until the aggregate input rate falls back below 1 Mbps, at which point the
queue will begin to diminish in length.) Because the probability of having more than
10 simultaneously active users is minuscule in this example, packet switching pro-
vides essentially the same performance as circuit switching, but does so while
allowing for more than three times the number of users.

Let’s now consider a second simple example. Suppose there are 10 users and that
one user suddenly generates one thousand 1,000-bit packets, while other users
remain quiescent and do not generate packets. Under TDM circuit switching with 10
slots per frame and each slot consisting of 1,000 bits, the active user can only use its
one time slot per frame to transmit data, while the remaining nine times slots in each
frame remain idle. It will be 10 seconds before all of the active user’s one million bits
of data has been transmitted. In the case of packet switching, the active user can con-
tinuously send its packets at the full link rate of 1 Mbps, since there are no other users
generating packets that need to be multiplexed with the active user’s packets. In this
case, all of the active user’s data will be transmitted within 1 second.

The above examples illustrate two ways in which the performance of packet
switching can be superior to that of circuit switching. They also highlight the crucial
difference between the two forms of sharing a link’s transmission rate among multi-
ple data streams. Circuit switching pre-allocates use of the transmission link regard-
less of demand, with allocated but unneeded link time going unused. Packet
switching on the other hand allocates link use on demand. Link transmission capac-
ity will be shared on a packet-by-packet basis only among those users who have
packets that need to be transmitted over the link. Such on-demand (rather than pre-
allocated) sharing of resources is sometimes referred to as the statistical multiplex-
ing of resources.

Although packet switching and circuit switching are both prevalent in today’s
telecommunication networks, the trend has certainly been in the direction of packet
switching. Even many of today’s circuit-switched telephone networks are slowly
migrating toward packet switching. In particular, telephone networks often use
packet switching for the expensive overseas portion of a telephone call.

1.3 « THE NETWORK CORE

1.3.2 How Do Packets Make Their Way Through
Packet-Switched Networks?

Earlier we said that a router takes a packet arriving on one of its attached communi-
cation links and forwards that packet on to another of its attached communication
links. But how does the router determine the link onto which it should forward the
packet? This is actually done in different ways by different types of computer net-
works. In this introductory chapter, we will describe one popular approach, namely,
the approach employed by the Internet.

In the Internet, each packet traversing the network contains the address of the
packet’s destination in its header. As with postal addresses, this address has a hierar-
chical structure. When a packet arrives at a router in the network, the router exam-
ines a portion of the packet’s destination address and forwards the packet to an
adjacent router. More specifically, each router has a forwarding table that maps
destination addresses (or portions of the destination addresses) to outbound links.
When a packet arrives at a router, the router examines the address and searches its
table using this destination address to find the appropriate outbound link. The router
then directs the packet to this outbound link.

We just learned that a router uses a packet’s destination address to index a for-
warding table and determine the appropriate outbound link. But this statement begs
yet another question: how do forwarding tables get set? Are they configured by hand
in each and every router, or does the Internet use a more automated procedure? This
issue will be studied in depth in Chapter 4. But to whet your appetite here, we’ll note
now that the Internet has a number of special routing protocols that are used to auto-
matically set the forwarding tables. A routing protocol may, for example, determine
the shortest path from each router to each destination and use the shortest path
results to configure the forwarding tables in the routers.

The end-to-end routing process is analogous to a car driver who does not use
maps but instead prefers to ask for directions. For example, suppose Joe is driving
from Philadelphia to 156 Lakeside Drive in Orlando, Florida. Joe first drives to his
neighborhood gas station and asks how to get to 156 Lakeside Drive in Orlando,
Florida. The gas station attendant extracts the Florida portion of the address and tells
Joe that he needs to get onto the interstate highway I-95 South, which has an
entrance just next to the gas station. He also tells Joe that once he enters Florida he
should ask someone else there. Joe then takes I-95 South until he gets to Jack-
sonville, Florida, at which point he asks another gas station attendant for directions.
The attendant extracts the Orlando portion of the address and tells Joe that he should
continue on [-95 to Daytona Beach and then ask someone else. In Daytona Beach
another gas station attendant also extracts the Orlando portion of the address and
tells Joe that he should take I-4 directly to Orlando. Joe takes [-4 and gets off at the
Orlando exit. Joe goes to another gas station attendant, and this time the attendant
extracts the Lakeside Drive portion of the address and tells Joe the road he must fol-
low to get to Lakeside Drive. Once Joe reaches Lakeside Drive, he asks a kid on a

33

34

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

bicycle how to get to his destination. The kid extracts the 156 portion of the address
and points to the house. Joe finally reaches his ultimate destination.

In the above analogy, the gas-station attendants and kids on bicycles are analo-
gous to routers. Their forwarding tables, which are in their brains, have been config-
ured by years of experience.

How would you actually like to see the end-to-end route that packets take in the
Internet? We now invite you to get your hands dirty by interacting with the Tracer-
oute program, by visiting the site http://www.traceroute.org. (For a discussion of
Traceroute, see Section 1.4.)

1.3.3 ISPs and Internet Backbones

We saw earlier that end systems (user PCs, PDAs, Web servers, mail servers, and
so on) connect into the Internet via a local ISP. The ISP can provide either wired or
wireless connectivity, using an array access technologies including DSL, cable,
FTTH, Wi-Fi, cellular, and WiMAX. Note the the local ISP does not have to be a
telco or a cable company: it can be, for example, a university (providing Internet
access to students, staff, and faculty) or a company (providing access for its
employees). But connecting end users and content providers into local ISPs is only
a small piece of solving the puzzle of connecting the hundreds of millions of end
systems and hundreds of thousands of networks that make up the Internet. The
Internet is a network of networks—understanding this phrase is the key to solving
this puzzle.

In the public Internet, access ISPs situated at the edge of the Internet are con-
nected to the rest of the Internet through a tiered hierarchy of ISPs, as shown in
Figure 1.15. Access ISPs are at the bottom of this hierarchy. At the very top of the
hierarchy is a relatively small number of so-called tier-1 ISPs. In many ways, a tier-1
ISP is the same as any network—it has links and routers and is connected to other
networks. In other ways, however, tier-1 ISPs are special. Their link speeds are often
622 Mbps or higher, with the larger tier-1 ISPs having links in the 2.5 to 10 Gbps
range; their routers must consequently be able to forward packets at extremely high
rates. Tier-1 ISPs are also characterized by being:

* Directly connected to each of the other tier-1 ISPs
* Connected to a large number of tier-2 ISPs and other customer networks

* International in coverage

Tier-1 ISPs are also known as Internet backbone networks. These include
Sprint, Verizon, MCI (previously UUNet/WorldCom), AT&T, NTT, Level3, Qwest,
and Cable & Wireless. Interestingly, no group officially sanctions tier-1 status; as the
saying goes—if you have to ask if you are a member of a group, you’re probably not.

A tier-2 ISP typically has regional or national coverage, and (importantly) con-
nects to only a few of the tier-1 ISPs (see Figure 1.15). Thus, in order to reach a
large portion of the global Internet, a tier-2 ISP needs to route traffic through one of

http://www.traceroute.org

1.3« THE NETWORK CORE

Tier 3

Figure 1.15 ¢ Inferconnection of ISPs

the tier-1 ISPs to which it is connected. A tier-2 ISP is said to be a customer of the
tier-1 ISP to which it is connected, and the tier-1 ISP is said to be a provider to its
customer. Many large companies and institutions connect their enterprise’s network
directly into a tier-1 or tier-2 ISP, thus becoming a customer of that ISP. A provider
ISP charges its customer ISP a fee, which typically depends on the transmission rate
of the link connecting the two. A tier-2 network may also choose to connect directly
to other tier-2 networks, in which case traffic can flow between the two tier-2 net-
works without having to pass through a tier-1 network. Below the tier-2 ISPs are the
lower-tier ISPs, which connect to the larger Internet via one or more tier-2 ISPs. At
the bottom of the hierarchy are the access ISPs. Further complicating matters, some
tier-1 providers are also tier-2 providers (that is, vertically integrated), selling Inter-
net access directly to end users and content providers, as well as to lower-tier ISPs.
When two ISPs are directly connected to each other at the same tier, they are said to
peer with each other. An interesting study [Subramanian 2002] seeks to define the
Internet’s tiered structure more precisely by studying the Internet’s topology in
terms of customer-provider and peer-peer relationships. For a readable discussion of
peering and customer-provided relationships, see [Van der Berg 2008].

35

36

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

Within an ISP’s network, the points at which the ISP connects to other ISPs
(whether below, above, or at the same level in the hierarchy) are known as Points of
Presence (POPs). A POP is simply a group of one or more routers in the ISP’s net-
work at which routers in other ISPs or in the networks belonging to the ISP’s cus-
tomers can connect. A tier-1 provider typically has many POPs scattered across
different geographical locations in its network, with multiple customer networks and
other ISPs connecting into each POP. For a customer network to connect to a
provider’s POP, the customer typically leases a high-speed link from a third-party
telecommunications provider and directly connects one of its routers to a router at
the provider’s POP. Furthermore, two ISPs may have multiple peering points, con-
necting with each other at multiple pairs of POPs.

In summary, the topology of the Internet is complex, consisting of dozens of
tier-1 and tier-2 ISPs and thousands of lower-tier ISPs. The ISPs are diverse in their
coverage, with some spanning multiple continents and oceans, and others limited
to narrow regions of the world. The lower-tier ISPs connect to the higher-tier
ISPs, and the higher-tier ISPs interconnect with one another. Users and content
providers are customers of lower-tier ISPs, and lower-tier ISPs are customers of
higher-tier ISPs.

1.4 Delay, Loss, and Throughput
in Packet-Switched Networks

Back in Section 1.1 we said that the Internet can be viewed as an infrastructure that
provides services to distributed applications running on end systems. Ideally, we
would like Internet services to be able to move as much data as we want between
any two end systems, instantaneously, without any data loss. Alas, this is a lofty
goal, one that is unachievable in reality. Instead, computer networks necessarily
constrain throughput (the amount of data per second that can be transferred)
between end systems, introduce delays between end systems, and can actually lose
packets. On one hand, it is unfortunate that the physical laws of reality introduce
delay and loss as well as constrain throughput. On the other hand, because computer
networks have these problems, there are many fascinating issues surrounding how
to deal with the problems—more than enough issues to fill a course on computer
networking and to motivate hundreds of PhD theses! In this section, we’ll begin to
examine and quantify delay, loss, and throughput in computer networks.

1.4.1 Overview of Delay in Packet-Switched Networks

Recall that a packet starts in a host (the source), passes through a series of routers,
and ends its journey in another host (the destination). As a packet travels from one
node (host or router) to the subsequent node (host or router) along this path, the

1.4 « DELAY, LOSS, AND THROUGHPUT IN PACKET-SWITCHED NETWORKS

Propagation

Nodal Queueing Transmission
processing (waiting for
transmission)

Figure 1.16 ¢ The nodal delay at router A

packet suffers from several types of delays at each node along the path. The most
important of these delays are the nodal processing delay, queuing delay, trans-
mission delay, and propagation delay; together, these delays accumulate to give a
total nodal delay. In order to acquire a deep understanding of packet switching
and computer networks, we must understand the nature and importance of these
delays.

Types of Delay

Let’s explore these delays in the context of Figure 1.16. As part of its end-to-end
route between source and destination, a packet is sent from the upstream node
through router A to router B. Our goal is to characterize the nodal delay at router A.
Note that router A has an outbound link leading to router B. This link is preceded by
a queue (also known as a buffer). When the packet arrives at router A from the
upstream node, router A examines the packet’s header to determine the appropriate
outbound link for the packet and then directs the packet to this link. In this example,
the outbound link for the packet is the one that leads to router B. A packet can be
transmitted on a link only if there is no other packet currently being transmitted on
the link and if there are no other packets preceding it in the queue; if the link is cur-
rently busy or if there are other packets already queued for the link, the newly arriv-
ing packet will then join the queue.

Processing Delay

The time required to examine the packet’s header and determine where to direct the
packet is part of the processing delay. The processing delay can also include other
factors, such as the time needed to check for bit-level errors in the packet that occurred
in transmitting the packet’s bits from the upstream node to router A. Processing delays
in high-speed routers are typically on the order of microseconds or less. After this

37

38

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

nodal processing, the router directs the packet to the queue that precedes the link to
router B. (In Chapter 4 we’ll study the details of how a router operates.)

Queuing Delay

At the queue, the packet experiences a queuing delay as it waits to be transmitted onto
the link. The length of the queuing delay of a specific packet will depend on the num-
ber of earlier-arriving packets that are queued and waiting for transmission across the
link. If the queue is empty and no other packet is currently being transmitted, then our
packet’s queuing delay will be zero. On the other hand, if the traffic is heavy and many
other packets are also waiting to be transmitted, the queuing delay will be long. We
will see shortly that the number of packets that an arriving packet might expect to find
is a function of the intensity and nature of the traffic arriving at the queue. Queuing
delays can be on the order of microseconds to milliseconds in practice.

Transmission Delay

Assuming that packets are transmitted in a first-come-first-served manner, as is com-
mon in packet-switched networks, our packet can be transmitted only after all the
packets that have arrived before it have been transmitted. Denote the length of the
packet by L bits, and denote the transmission rate of the link from router A to router
B by R bits/sec. For example, for a 10 Mbps Ethernet link, the rate is R = 10 Mbps;
for a 100 Mbps Ethernet link, the rate is R = 100 Mbps. The transmission delay (also
called the store-and-forward delay, as discussed in Section 1.3) is L/R. This is the
amount of time required to push (that is, transmit) all of the packet’s bits into the link.
Transmission delays are typically on the order of microseconds to milliseconds in
practice.

Propagation Delay

Once a bit is pushed into the link, it needs to propagate to router B. The time
required to propagate from the beginning of the link to router B is the propagation
delay. The bit propagates at the propagation speed of the link. The propagation
speed depends on the physical medium of the link (that is, fiber optics, twisted-pair
copper wire, and so on) and is in the range of

2 - 108 meters/sec to 3 - 108 meters/sec

which is equal to, or a little less than, the speed of light. The propagation delay is
the distance between two routers divided by the propagation speed. That is, the
propagation delay is d/s, where d is the distance between router A and router B and s
is the propagation speed of the link. Once the last bit of the packet propagates to
node B, it and all the preceding bits of the packet are stored in router B. The whole

1.4 « DELAY, LOSS, AND THROUGHPUT IN PACKET-SWITCHED NETWORKS

process then continues with router B now performing the forwarding. In wide-area
networks, propagation delays are on the order of milliseconds.

Comparing Transmission and Propagation Delay

Newcomers to the field of computer networking sometimes have difficulty under-
standing the difference between transmission delay and propagation delay. The differ-
ence is subtle but important. The transmission delay is the amount of time required for
the router to push out the packet; it is a function of the packet’s length and the trans-
mission rate of the link, but has nothing to do with the distance between the two
routers. The propagation delay, on the other hand, is the time it takes a bit to propagate
from one router to the next; it is a function of the distance between the two routers, but
has nothing to do with the packet’s length or the transmission rate of the link.

An analogy might clarify the notions of transmission and propagation delay.
Consider a highway that has a tollbooth every 100 kilometers, as shown in Figure
1.17. You can think of the highway segments between tollbooths as links and the
tollbooths as routers. Suppose that cars travel (that is, propagate) on the highway at
a rate of 100 km/hour (that is, when a car leaves a tollbooth, it instantaneously accel-
erates to 100 km/hour and maintains that speed between tollbooths). Suppose next
that 10 cars, traveling together as a caravan, follow each other in a fixed order. You
can think of each car as a bit and the caravan as a packet. Also suppose that each
tollbooth services (that is, transmits) a car at a rate of one car per 12 seconds, and
that it is late at night so that the caravan’s cars are the only cars on the highway.
Finally, suppose that whenever the first car of the caravan arrives at a tollbooth, it
waits at the entrance until the other nine cars have arrived and lined up behind it.
(Thus the entire caravan must be stored at the tollbooth before it can begin to be for-
warded.) The time required for the tollbooth to push the entire caravan onto the
highway is (10 cars)/(5 cars/minute) = 2 minutes. This time is analogous to the
transmission delay in a router. The time required for a car to travel from the exit of
one tollbooth to the next tollbooth is 100 km/(100 km/hour) = 1 hour. This time is
analogous to propagation delay. Therefore, the time from when the caravan is stored
in front of a tollbooth until the caravan is stored in front of the next tollbooth is the
sum of transmission delay and propagation delay—in this example, 62 minutes.

<«——100 km —>i<—1oo km --

T
Ten-car Toll Toll
caravan booth booth

Figure 1.17 ¢ Caravan analogy

39

40

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

Let’s explore this analogy a bit more. What would happen if the tollbooth serv-
ice time for a caravan were greater than the time for a car to travel between toll-
booths? For example, suppose now that the cars travel at the rate of 1,000 km/hour
and the tollbooth services cars at the rate of one car per minute. Then the traveling
delay between two tollbooths is 6 minutes and the time to serve a caravan is 10 min-
utes. In this case, the first few cars in the caravan will arrive at the second tollbooth
before the last cars in the caravan leave the first tollbooth. This situation also arises
in packet-switched networks—the first bits in a packet can arrive at a router while
many of the remaining bits in the packet are still waiting to be transmitted by the
preceding router.

If a picture speaks a thousand words, then an animation must speak a million
words. The companion Web site for this textbook provides an interactive Java applet
that nicely illustrates and contrasts transmission delay and propagation delay. The
reader is highly encouraged to visit that applet.

If we let dp d d and d__ denote the processing, queuing, transmis-

A roc’ “queue’ “trans’ . .
sion, and propagation delays, then the total nodal delay is given by

dnodal = dproc + dqueue + dtrans + dprop

The contribution of these delay components can vary significantly. For example,
dprop can be negligible (for example, a couple of microseconds) for a link connect-
ing two routers on the same university campus; however, d__ is hundreds of mil-
liseconds for two routers interconnected by a geostationary satellite link, and can be
the dominant term in d__, . Similarly, d, . can range from negligible to significant.
Its contribution is typically negligible for transmission rates of 10 Mbps and higher
(for example, for LANs); however, it can be hundreds of milliseconds for large
Internet packets sent over low-speed dial-up modem links. The processing delay,
d ... is often negligible; however, it strongly influences a router’s maximum
throughput, which is the maximum rate at which a router can forward packets.

1.4.2 Queuing Delay and Packet Loss

The most complicated and interesting component of nodal delay is the queuing
delay, dqueue. In fact, queuing delay is so important and interesting in computer net-
working that thousands of papers and numerous books have been written about it
[Bertsekas 1991; Daigle 1991; Kleinrock 1975, 1976; Ross 1995]. We give only a
high-level, intuitive discussion of queuing delay here; the more curious reader may
want to browse through some of the books (or even eventually write a PhD thesis
on the subject!). Unlike the other three delays (namely, dpmc, dtrans, and dpmp), the
queuing delay can vary from packet to packet. For example, if 10 packets arrive
at an empty queue at the same time, the first packet transmitted will suffer no queu-
ing delay, while the last packet transmitted will suffer a relatively large queuing

delay (while it waits for the other nine packets to be transmitted). Therefore, when

1.4 « DELAY, LOSS, AND THROUGHPUT IN PACKET-SWITCHED NETWORKS

characterizing queuing delay, one typically uses statistical measures, such as aver-
age queuing delay, variance of queuing delay, and the probability that the queuing
delay exceeds some specified value.

When is the queuing delay large and when is it insignificant? The answer to this
question depends on the rate at which traffic arrives at the queue, the transmission
rate of the link, and the nature of the arriving traffic, that is, whether the traffic arrives
periodically or arrives in bursts. To gain some insight here, let a denote the average
rate at which packets arrive at the queue (a is in units of packets/sec). Recall that R is
the transmission rate; that is, it is the rate (in bits/sec) at which bits are pushed out of
the queue. Also suppose, for simplicity, that all packets consist of L bits. Then the
average rate at which bits arrive at the queue is La bits/sec. Finally, assume that the
queue is very big, so that it can hold essentially an infinite number of bits. The ratio
La/R, called the traffic intensity, often plays an important role in estimating the
extent of the queuing delay. If La/R > 1, then the average rate at which bits arrive at
the queue exceeds the rate at which the bits can be transmitted from the queue. In this
unfortunate situation, the queue will tend to increase without bound and the queuing
delay will approach infinity! Therefore, one of the golden rules in traffic engineering
is: Design your system so that the traffic intensity is no greater than 1.

Now consider the case La/R < 1. Here, the nature of the arriving traffic impacts
the queuing delay. For example, if packets arrive periodically—that is, one packet
arrives every L/R seconds—then every packet will arrive at an empty queue and
there will be no queuing delay. On the other hand, if packets arrive in bursts but
periodically, there can be a significant average queuing delay. For example, suppose
N packets arrive simultaneously every (L/R)N seconds. Then the first packet trans-
mitted has no queuing delay; the second packet transmitted has a queuing delay of
L/R seconds; and more generally, the nth packet transmitted has a queuing delay of
(n — 1)L/R seconds. We leave it as an exercise for you to calculate the average queu-
ing delay in this example.

The two examples of periodic arrivals described above are a bit academic. Typ-
ically, the arrival process to a queue is random;, that is, the arrivals do not follow any
pattern and the packets are spaced apart by random amounts of time. In this more
realistic case, the quantity La/R is not usually sufficient to fully characterize the
queueing delay statistics. Nonetheless, it is useful in gaining an intuitive understand-
ing of the extent of the queuing delay. In particular, if the traffic intensity is close to
zero, then packet arrivals are few and far between and it is unlikely that an arriving
packet will find another packet in the queue. Hence, the average queuing delay will
be close to zero. On the other hand, when the traffic intensity is close to 1, there will
be intervals of time when the arrival rate exceeds the transmission capacity (due to
variations in packet arrival rate), and a queue will form during these periods of time;
when the arrival rate is less than the transmission capacity, the length of the queue
will shrink. Nonetheless, as the traffic intensity approaches 1, the average queue
length gets larger and larger. The qualitative dependence of average queuing delay
on the traffic intensity is shown in Figure 1.18.

41

42

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

Average queuing delay

T

A4

La/R

Figure 1.18 ¢ Dependence of average queuing delay on traffic intensity

One important aspect of Figure 1.18 is the fact that as the traffic intensity
approaches 1, the average queuing delay increases rapidly. A small percentage
increase in the intensity will result in a much larger percentage-wise increase in
delay. Perhaps you have experienced this phenomenon on the highway. If you regu-
larly drive on a road that is typically congested, the fact that the road is typically
congested means that its traffic intensity is close to 1. If some event causes an even
slightly larger-than-usual amount of traffic, the delays you experience can be huge.

To really get a good feel for what queuing delays are about, you are encouraged
once again to visit the companion Web site, which provides an interactive Java
applet for a queue. If you set the packet arrival rate high enough so that the traffic
intensity exceeds 1, you will see the queue slowly build up over time.

Packet Loss

In our discussions above, we have assumed that the queue is capable of holding an
infinite number of packets. In reality a queue preceding a link has finite capacity,
although the queuing capacity greatly depends on the router design and cost.
Because the queue capacity is finite, packet delays do not really approach infinity as
the traffic intensity approaches 1. Instead, a packet can arrive to find a full queue.
With no place to store such a packet, a router will drop that packet; that is, the
packet will be lost. This overflow at a queue can again be seen in the Java applet for
a queue when the traffic intensity is greater than 1.

From an end-system viewpoint, a packet loss will look like a packet having
been transmitted into the network core but never emerging from the network at the
destination. The fraction of lost packets increases as the traffic intensity increases.
Therefore, performance at a node is often measured not only in terms of delay, but
also in terms of the probability of packet loss. As we’ll discuss in the subsequent

1.4 « DELAY, LOSS, AND THROUGHPUT IN PACKET-SWITCHED NETWORKS

chapters, a lost packet may be retransmitted on an end-to-end basis in order to
ensure that all data are eventually transferred from source to destination

1.4.3 End-to-End Delay

Our discussion up to this point has focused on the nodal delay, that is, the delay at a
single router. Let’s now consider the total delay from source to destination. To get a
handle on this concept, suppose there are N — 1 routers between the source host and
the destination host. Let’s also suppose for the moment that the network is uncon-
gested (so that queuing delays are negligible), the processing delay at each router
and at the source host is d o’ the transmission rate out of each router and out of the
source host is R bits/sec, and the propagation on each link is dpmp. The nodal delays
accumulate and give an end-to-end delay,
d =Nd., +d.___+d_)

end-end — proc trans prop

where, once again, d,, = I/R, where L is the packet size. We leave it to you to gen-
eralize this formula to the case of heterogeneous delays at the nodes and to the pres-

ence of an average queuing delay at each node.

Traceroute

To get a hands-on feel for end-to-end delay in a computer network, we can make use
of the Traceroute program. Traceroute is a simple program that can run in any Inter-
net host. When the user specifies a destination hostname, the program in the source
host sends multiple, special packets toward that destination. As these packets work
their way toward the destination, they pass through a series of routers. When a
router receives one of these special packets, it sends back to the source a short mes-
sage that contains the name and address of the router.

More specifically, suppose there are N — 1 routers between the source and the
destination. Then the source will send N special packets into the network, with each
packet addressed to the ultimate destination. These N special packets are marked /
through N, with the first packet marked / and the last packet marked N. When the nth
router receives the nth packet marked n, the router does not forward the packet
toward its destination, but instead sends a message back to the source. When the des-
tination host receives the Nth packet, it too returns a message back to the source. The
source records the time that elapses between when it sends a packet and when it
receives the corresponding return message; it also records the name and address of
the router (or the destination host) that returns the message. In this manner, the source
can reconstruct the route taken by packets flowing from source to destination, and
the source can determine the round-trip delays to all the intervening routers. Tracer-
oute actually repeats the experiment just described three times, so the source actually
sends 3 ¢ N packets to the destination. RFC 1393 describes Traceroute in detail.

43

44 CHAPTER 1T o COMPUTER NETWORKS AND THE INTERNET

Here is an example of the output of the Traceroute program, where the route
was being traced from the source host gaia.cs.umass.edu (at the University of Mass-
achusetts) to the host cis.poly.edu (at Polytechnic University in Brooklyn). The out-
put has six columns: the first column is the n value described above, that is, the
number of the router along the route; the second column is the name of the router;
the third column is the address of the router (of the form xxx.xxx.xxx.xxx); the last
three columns are the round-trip delays for three experiments. If the source receives
fewer than three messages from any given router (due to packet loss in the network),
Traceroute places an asterisk just after the router number and reports fewer than
three round-trip times for that router.

1 cs-gw (128.119.240.254) 1.009 ms 0.899 ms 0.993 ms

2 128.119.3.154 (128.119.3.154) 0.931 ms 0.441 ms 0.651 ms

3 border4-rt-gi-1-3.gw.umass.edu (128.119.2.194) 1.032 ms 0.484 ms 0.451 ms

4 acrl-ge-2-1-0.Boston.cw.net (208.172.51.129) 10.006 ms 8.150 ms 8.460 ms

5 agr4-loopback.NewYork.cw.net (206.24.194.104) 12.272 ms 14.344 ms 13.267 ms

6 acr2-loopback.NewYork.cw.net (206.24.194.62) 13.225 ms 12.292 ms 12.148 ms

7 posl0-2.core2.NewYorkl.Level3.net (209.244.160.133) 12.218 ms 11.823 ms 11.793 ms

8 gige9-1-52.hsipaccessl.NewYorkl.Level3.net (64.159.17.39) 13.081 ms 11.556 ms 13.297 ms
9 p0-0.polyu.bbnplanet.net (4.25.109.122) 12.716 ms 13.052 ms 12.786 ms

10 cis.poly.edu (128.238.32.126) 14.080 ms 13.035 ms 12.802 ms

In the trace above there are nine routers between the source and the destination.
Most of these routers have a name, and all of them have addresses. For example, the
name of Router 3 is border4-rt-gi-1-3.gw.umass.edu and its address is
128.119.2.194. Looking at the data provided for this same router, we see that
in the first of the three trials the round-trip delay between the source and the router
was 1.03 msec. The round-trip delays for the subsequent two trials were 0.48 and
0.45 msec. These round-trip delays include all of the delays just discussed, includ-
ing transmission delays, propagation delays, router processing delays, and queuing
delays. Because the queuing delay is varying with time, the round-trip delay of
packet n sent to a router n can sometimes be longer than the round-trip delay of
packet n+1 sent to router n+1. Indeed, we observe this phenomena in the above
example: the delays to Router 6 are larger than the delays to Router 7!

Want to try out Traceroute for yourself? We highly recommended that you visit
http://www.traceroute.org, which provides a Web interface to an extensive list of
sources for route tracing. You choose a source and supply the hostname for any des-
tination. The Traceroute program then does all the work. There are a number of free
software programs that provide a graphical interface to Traceroute; one of our
favorites is PingPlotter [PingPlotter 2009].

End System, Application, and Other Delays

In addition to processing, transmission, and propagation delays, there can be addi-
tional significant delays in the end systems. For example, dial-up modems introduce

http://www.traceroute.org

1.4 « DELAY, LOSS, AND THROUGHPUT IN PACKET-SWITCHED NETWORKS

a modulation/encoding delay, which can be on the order of tens of milliseconds.
(The modulation/encoding delays for other access technologies—including Ether-
net, cable modem, and DSL—are less significant and usually negligible.) An end
system wanting to transmit a packet into a shared medium (e.g., as in a WiFi or Eth-
ernet scenario) may purposefully delay its transmission as part of its protocol for
sharing the medium with other end systems; we’ll consider such protocols in detail
in Chapter 5. Another important delay is media packetization delay, which is pres-
ent in Voice-over-IP (VoIP) applications. In VoIP, the sending side must first fill a
packet with encoded digitized speech before passing the packet to the Internet. This
time to fill a packet—called the packetization delay—can be significant and can
impact the user-perceived quality of a VoIP call. This issue will be further explored
in a homework problem at the end of this chapter.

1.4.4 Throughput in Computer Networks

In addition to delay and packet loss, another critical performance measure in com-
puter networks is end-to-end throughput. To define throughput, consider transfer-
ring a large file from Host A to Host B across a computer network. This transfer
might be, for example, a large video clip from one peer to another in a P2P file shar-
ing system. The instantaneous throughput at any instant of time is the rate (in
bits/sec) at which Host B is receiving the file. (Many applications, including many
P2P file sharing systems, display the instantaneous throughput during downloads in
the user interface—perhaps you have observed this before!) If the file consists of F
bits and the transfer takes 7 seconds for Host B to receive all F bits, then the
average throughput of the file transfer is F/T bits/sec. For some applications, such
as Internet telephony, it is desirable to have a low delay and an instantaneous
throughput consistently above some threshold (for example, over 24 kbps for some
Internet telephony applications and over 256 kbps for some real-time video applica-
tions). For other applications, including those involving file transfers, delay is not
critical, but it is desirable to have the highest possible throughput.

To gain further insight into the important concept of throughput, let’s consider a
few examples. Figure 1.19(a) shows two end systems, a server and a client, con-
nected by two communication links and a router. Consider the throughput for a file
transfer from the server to the client. Let R_denote the rate of the link between
the server and the router; and R, denote the rate of the link between the router and
the client. Suppose that the only bits being sent in the entire network are those
from the server to the client. We now ask, in this ideal scenario, what is the server-
to-client throughput? To answer this question, we may think of bits as fluid and
communication links as pipes. Clearly, the server cannot pump bits through its link
at a rate faster than R, bps; and the router cannot forward bits at a rate faster than R,
bps. If R_ < R, then the bits pumped by the server will “flow” right through the
router and arrive at the client at a rate of R_bps, giving a throughput of R_bps. If, on
the other hand, R <R, then the router will not be able to forward bits as quickly as

45

46

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

R <} fe ==

Server Client
a.

ey =y | o=y v e

Server Client

b.

Figure 1.19 ¢ Throughput for a file transfer from server to client

it receives them. In this case, bits will only leave the router at rate R , giving an end-
to-end throughput of R . (Note also that if bits continue to arrive at the router at rate
R, and continue to leave the router at R, the backlog of bits at the router waiting
for transmission to the client will grow and grow—a most undesirable situation!)
Thus, for this simple two-link network, the throughput is min{R , R }, that is, it is
the transmission rate of the bottleneck link. Having determined the throughput, we
can now approximate the time it takes to transfer a large file of F bits from server to
client as F/min{R, R_}. For a specific example, suppose you are downloading an
MP3 file of F' = 32 million bits, the server has a transmission rate of R =2 Mbps,
and you have an access link of R, = 1 Mbps. The time needed to transfer the file is
then 32 seconds. Of course, these expressions for throughput and transfer time are
only approximations, as they do not account for packet-level and protocol issues.

Figure 1.19(b) now shows a network with N links between the server and the
client, with the transmission rates of the N links being R, R,,..., R,. Applying the
same analysis as for the two-link network, we find that the throughput for a file
transfer from server to client is min{R,, R,,...,R,;}, which is once again the transmis-
sion rate of the bottleneck link along the path between server and client.

Now consider another example motivated by today’s Internet. Figure 1.20(a)
shows two end systems, a server and a client, connected to a computer network.
Consider the throughput for a file transfer from the server to the client. The server is
connected to the network with an access link of rate R_and the client is connected to
the network with an access link of rate R . Now suppose that all the links in the core
of the communication network have very high transmission rates, much higher than
R_and R_. Indeed, today, the core of the Internet is over-provisioned with high speed
links that experience little congestion [Akella 2003]. Also suppose that the only bits
being sent in the entire network are those from the server to the client. Because the
core of the computer network is like a wide pipe in this example, the rate at which

1.4 « DELAY, LOSS, AND THROUGHPUT IN PACKET-SWITCHED NETWORKS

Server 10 Servers

Bottleneck
: link of
capacity R

Ré? &
E ER

Client 10 Clients
a. b.

Figure 1.20 ¢ End-o-end throughput: (a) Client downloads a file from
server; (b) 10 clients downloading with 10 servers.

bits can flow from source to destination is again the minimum of R_and R, that is,
throughput = min{R, R_}. Therefore, the constraining factor for throughput in
today’s Internet is typically the access network.

For a final example, consider Figure 1.20(b) in which there are 10 servers and
10 clients connected to the core of the computer network. In this example, there are
10 simultaneous downloads taking place, involving 10 client-server pairs. Suppose
that these 10 downloads are the only traffic in the network at the current time. As
shown in the figure, there is a link in the core that is traversed by all 10 downloads.
Denote R for the transmission rate of this link R. Let’s suppose that all server access
links have the same rate R, all client access links have the same rate R, and the
transmission rates of all the links in the core—except the one common link of rate
R—are much larger than R, R, and R. Now we ask, what are the throughputs of the
downloads? Clearly, if the rate of the common link, R, is large—say a hundred times
larger than both R_and R —then the throughput for each download will once again
be min{R, R_}. But what if the rate of the common link is of the same order as R,
and R.? What will the throughput be in this case? Let’s take a look at a specific

47

48

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

example. Suppose R, =2 Mbps, R, = 1 Mbps, R = 5 Mbps, and the common link
divides its transmission rate equally among the 10 downloads. Then the bottleneck
for each download is no longer in the access network, but is now instead the shared
link in the core, which only provides each download with 500 kbps of throughput.
Thus the end-to-end throughput for each download is now reduced to 500 kbps.

The examples in Figure 1.19 and Figure 1.20(a) show that throughput depends
on the transmission rates of the links over which the data flows. We saw that when
there is no other intervening traffic, the throughput can simply be approximated as
the minimum transmission rate along the path between source and destination. The
example in Figure 1.20(b) shows that more generally the throughput depends not
only on the transmission rates of the links along the path, but also on the intervening
traffic. In particular, a link with a high transmission rate may nonetheless be the bot-
tleneck link for a file transfer if many other data flows are also passing through that
link. We will examine throughput in computer networks more closely in the home-
work problems and in the subsequent chapters.

1.5 Protocol Layers and Their Service Models

From our discussion thus far, it is apparent that the Internet is an extremely compli-
cated system. We have seen that there are many pieces to the Internet: numerous
applications and protocols, various types of end systems, packet switches, and vari-
ous types of link-level media. Given this enormous complexity, is there any hope of
organizing a network architecture, or at least our discussion of network architecture?
Fortunately, the answer to both questions is yes.

1.5.1 Layered Architecture

Before attempting to organize our thoughts on Internet architecture, let’s look for a
human analogy. Actually, we deal with complex systems all the time in our every-
day life. Imagine if someone asked you to describe, for example, the airline system.
How would you find the structure to describe this complex system that has ticketing
agents, baggage checkers, gate personnel, pilots, airplanes, air traffic control, and a
worldwide system for routing airplanes? One way to describe this system might be
to describe the series of actions you take (or others take for you) when you fly on an
airline. You purchase your ticket, check your bags, go to the gate, and eventually get
loaded onto the plane. The plane takes off and is routed to its destination. After your
plane lands, you deplane at the gate and claim your bags. If the trip was bad, you
complain about the flight to the ticket agent (getting nothing for your effort). This
scenario is shown in Figure 1.21.

Already, we can see some analogies here with computer networking: You are
being shipped from source to destination by the airline; a packet is shipped from

1.5

Ticket (purchase) Ticket (complain)

Baggage (check) Baggage (claim)

Gates (load) Gates (unload)

Runway takeoff Runway landing

Airplane routing Airplane routing

Airplane routing

Figure 1.21 ¢ Taking an airplane trip: actions

source host to destination host in the Internet. But this is not quite the analogy we
are after. We are looking for some structure in Figure 1.21. Looking at Figure 1.21,
we note that there is a ticketing function at each end; there is also a baggage func-
tion for already-ticketed passengers, and a gate function for already-ticketed and
already-baggage-checked passengers. For passengers who have made it through the
gate (that is, passengers who are already ticketed, baggage-checked, and through the
gate), there is a takeoff and landing function, and while in flight, there is an airplane-
routing function. This suggests that we can look at the functionality in Figure 1.21
in a horizontal manner, as shown in Figure 1.22.

Figure 1.22 has divided the airline functionality into layers, providing a frame-
work in which we can discuss airline travel. Note that each layer, combined with the

Ticket (purchase)

Baggage (check)

Gates (load)

Runway takeoff

Ticket (complain)

Baggage (claim)

Gates (unload)

Runway landing

Airplane routing

Airplane routing

Airplane routing

Airplane routing

Departure airport

Intermediate air-traffic
control centers

Figure 1.22 ¢ Horizontal layering of airline functionality

Arrival airport

PROTOCOL LAYERS AND THEIR SERVICE MODELS

Ticket

Baggage

Gate
Takeoff/Landing

Airplane routing

49

50

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

layers below it, implements some functionality, some service. At the ticketing layer
and below, airline-counter-to-airline-counter transfer of a person is accomplished.
At the baggage layer and below, baggage-check-to-baggage-claim transfer of a per-
son and bags is accomplished. Note that the baggage layer provides this service only
to an already-ticketed person. At the gate layer, departure-gate-to-arrival-gate trans-
fer of a person and bags is accomplished. At the takeoff/landing layer, runway-to-
runway transfer of people and their bags is accomplished. Each layer provides its
service by (1) performing certain actions within that layer (for example, at the gate
layer, loading and unloading people from an airplane) and by (2) using the services
of the layer directly below it (for example, in the gate layer, using the runway-to-
runway passenger transfer service of the takeoff/landing layer).

A layered architecture allows us to discuss a well-defined, specific part of a
large and complex system. This simplification itself is of considerable value by pro-
viding modularity, making it much easier to change the implementation of the serv-
ice provided by the layer. As long as the layer provides the same service to the layer
above it, and uses the same services from the layer below it, the remainder of the
system remains unchanged when a layer’s implementation is changed. (Note that
changing the implementation of a service is very different from changing the serv-
ice itself!) For example, if the gate functions were changed (for instance, to have
people board and disembark by height), the remainder of the airline system would
remain unchanged since the gate layer still provides the same function (loading and
unloading people); it simply implements that function in a different manner after the
change. For large and complex systems that are constantly being updated, the ability
to change the implementation of a service without affecting other components of the
system is another important advantage of layering.

Protocol Layering

But enough about airlines. Let’s now turn our attention to network protocols. To
provide structure to the design of network protocols, network designers organize
protocols—and the network hardware and software that implement the protocols—
in layers. Each protocol belongs to one of the layers, just as each function in the
airline architecture in Figure 1.22 belonged to a layer. We are again interested in
the services that a layer offers to the layer above—the so-called service model of
a layer. Just as in the case of our airline example, each layer provides its service
by (1) performing certain actions within that layer and by (2) using the services of
the layer directly below it. For example, the services provided by layer n may
include reliable delivery of messages from one edge of the network to the other.
This might be implemented by using an unreliable edge-to-edge message delivery
service of layer n — 1, and adding layer n functionality to detect and retransmit
lost messages.

A protocol layer can be implemented in software, in hardware, or in a combina-
tion of the two. Application-layer protocols—such as HTTP and SMTP—are almost

1.5 « PROTOCOL LAYERS AND THEIR SERVICE MODELS 51

Application
Presentation
Application Session
Transport Transport
Network Network
Link Link
Physical Physical
a. Five-layer b. Seven-layer
Internet 1SO OSI
protocol stack reference model

Figure 1.23 ¢ The Internet protocol stack (a) and OSI reference model (b)

always implemented in software in the end systems; so are transport-layer protocols.
Because the physical layer and data link layers are responsible for handling commu-
nication over a specific link, they are typically implemented in a network interface
card (for example, Ethernet or WiFi interface cards) associated with a given link.
The network layer is often a mixed implementation of hardware and software. Also
note that just as the functions in the layered airline architecture were distributed
among the various airports and flight control centers that make up the system, so too
is a layer n protocol distributed among the end systems, packet switches, and other
components that make up the network. That is, there’s often a piece of a layer n pro-
tocol in each of these network components.

Protocol layering has conceptual and structural advantages. As we have seen,
layering provides a structured way to discuss system components. Modularity
makes it easier to update system components. We mention, however, that some
researchers and networking engineers are vehemently opposed to layering [Wake-
man 1992]. One potential drawback of layering is that one layer may duplicate
lower-layer functionality. For example, many protocol stacks provide error recov-
ery on both a per-link basis and an end-to-end basis. A second potential drawback
is that functionality at one layer may need information (for example, a timestamp
value) that is present only in another layer; this violates the goal of separation of
layers.

When taken together, the protocols of the various layers are called the protocol
stack. The Internet protocol stack consists of five layers: the physical, link, network,
transport, and application layers, as shown in Figure 1.23(a). If you examine the
Table of Contents, you will see that we have roughly organized this book using the
layers of the Internet protocol stack. We take a top-down approach, first covering
the application layer and then proceeding downward.

52

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

Application Layer

The application layer is where network applications and their application-layer proto-
cols reside. The Internet’s application layer includes many protocols, such as the HTTP
protocol (which provides for Web document request and transfer), SMTP (which pro-
vides for the transfer of e-mail messages), and FTP (which provides for the transfer of
files between two end systems). We’ll see that certain network functions, such as the
translation of human-friendly names for Internet end systems like www.ietf.org to a
32-bit network address, are also done with the help of a specific application-layer pro-
tocol, namely, the domain name system (DNS). We’ll see in Chapter 2 that it is very
easy to create and deploy our own new application-layer protocols.

An application-layer protocol is distributed over multiple end systems, with the
application in one end system using the protocol to exchange packets of information
with the application in another end system. We’ll refer to this packet of information
at the application layer as a message.

Transport Layer

The Internet’s transport layer transports application-layer messages between
application endpoints. In the Internet there are two transport protocols, TCP and
UDP, either of which can transport application-layer messages. TCP provides a
connection-oriented service to its applications. This service includes guaranteed
delivery of application-layer messages to the destination and flow control (that is,
sender/receiver speed matching). TCP also breaks long messages into shorter seg-
ments and provides a congestion-control mechanism, so that a source throttles its
transmission rate when the network is congested. The UDP protocol provides a con-
nectionless service to its applications. This is a no-frills service that provides no
reliability, no flow control, and no congestion control. In this book, we’ll refer to a
transport-layer packet as a segment.

Network Layer

The Internet’s network layer is responsible for moving network-layer packets
known as datagrams from one host to another. The Internet transport-layer proto-
col (TCP or UDP) in a source host passes a transport-layer segment and a destina-
tion address to the network layer, just as you would give the postal service a letter
with a destination address. The network layer then provides the service of deliver-
ing the segment to the transport layer in the destination host.

The Internet’s network layer includes the celebrated IP Protocol, which defines
the fields in the datagram as well as how the end systems and routers act on these
fields. There is only one IP protocol, and all Internet components that have a net-
work layer must run the IP protocol. The Internet’s network layer also contains rout-
ing protocols that determine the routes that datagrams take between sources and

www.ietf.org

1.5 « PROTOCOL LAYERS AND THEIR SERVICE MODELS

destinations. The Internet has many routing protocols. As we saw in Section 1.3, the
Internet is a network of networks, and within a network, the network administrator
can run any routing protocol desired. Although the network layer contains both the
IP protocol and numerous routing protocols, it is often simply referred to as the IP
layer, reflecting the fact that IP is the glue that binds the Internet together.

Link Layer

The Internet’s network layer routes a datagram through a series of routers between
the source and destination. To move a packet from one node (host or router) to the
next node in the route, the network layer relies on the services of the link layer. In
particular, at each node, the network layer passes the datagram down to the link
layer, which delivers the datagram to the next node along the route. At this next
node, the link layer passes the datagram up to the network layer.

The services provided by the link layer depend on the specific link-layer proto-
col that is employed over the link. For example, some link-layer protocols provide
reliable delivery, from transmitting node, over one link, to receiving node. Note that
this reliable delivery service is different from the reliable delivery service of TCP,
which provides reliable delivery from one end system to another. Examples of link-
layer protocols include Ethernet, WiFi, and the Point-to-Point Protocol (PPP). As
datagrams typically need to traverse several links to travel from source to destina-
tion, a datagram may be handled by different link-layer protocols at different links
along its route. For example, a datagram may be handled by Ethernet on one link
and by PPP on the next link. The network layer will receive a different service from
each of the different link-layer protocols. In this book, we’ll refer to the link-layer
packets as frames.

Physical Layer

While the job of the link layer is to move entire frames from one network element
to an adjacent network element, the job of the physical layer is to move the individ-
ual bits within the frame from one node to the next. The protocols in this layer are
again link dependent and further depend on the actual transmission medium of the
link (for example, twisted-pair copper wire, single-mode fiber optics). For example,
Ethernet has many physical-layer protocols: one for twisted-pair copper wire,
another for coaxial cable, another for fiber, and so on. In each case, a bit is moved
across the link in a different way.

The OSI Model

Having discussed the Internet protocol stack in detail, we should mention that it is
not the only protocol stack around. In particular, back in the late 1970s, the Interna-
tional Organization for Standardization (ISO) proposed that computer networks be

53

54

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

organized around seven layers, called the Open Systems Interconnection (OSI)
model [ISO 2009]. The OSI model took shape when the protocols that were to
become the Internet protocols were in their infancy, and were but one of many dif-
ferent protocol suites under development; in fact, the inventors of the original OSI
model probably did not have the Internet in mind when creating it. Nevertheless,
beginning in the late 1970s, many training and university courses picked up on the
ISO mandate and organized courses around the seven-layer model. Because of its
early impact on networking education, the seven-layer model continues to linger on
in some networking textbooks and training courses.

The seven layers of the OSI reference model, shown in Figure 1.23(b), are:
application layer, presentation layer, session layer, transport layer, network layer,
data link layer, and physical layer. The functionality of five of these layers is
roughly the same as their similarly named Internet counterparts. Thus, let’s consider
the two additional layers present in the OSI reference model—the presentation layer
and the session layer. The role of the presentation layer is to provide services that
allow communicating applications to interpret the meaning of data exchanged.
These services include data compression and data encryption (which are self-
explanatory) as well as data description (which, as we will see in Chapter 9, frees
the applications from having to worry about the internal format in which data are
represented/stored—formats that may differ from one computer to another). The
session layer provides for delimiting and synchronization of data exchange, includ-
ing the means to build a checkpointing and recovery scheme.

The fact that the Internet lacks two layers found in the OSI reference model
poses a couple of interesting questions: Are the services provided by these layers
unimportant? What if an application needs one of these services? The Internet’s
answer to both of these questions is the same—it’s up to the application developer.
It’s up to the application developer to decide if a service is important, and if the
service is important, it’s up to the application developer to build that functionality
into the application.

1.5.2 Messages, Segments, Datagrams, and Frames

Figure 1.24 shows the physical path that data takes down a sending end system’s
protocol stack, up and down the protocol stacks of an intervening link-layer switch
and router, and then up the protocol stack at the receiving end system. As we discuss
later in this book, routers and link-layer switches are both packet switches. Similar
to end systems, routers and link-layer switches organize their networking hardware
and software into layers. But routers and link-layer switches do not implement all of
the layers in the protocol stack; they typically implement only the bottom layers. As
shown in Figure 1.24, link-layer switches implement layers 1 and 2; routers imple-
ment layers 1 through 3. This means, for example, that Internet routers are capable
of implementing the IP protocol (a layer 3 protocol), while link-layer switches are
not. We’ll see later that while link-layer switches do not recognize IP addresses, they

1.5 « PROTOCOL LAYERS AND THEIR SERVICE MODELS

Source
Message M | Application
Segment Hy M | Transport
Datagram H, H{ M | Network —
Frame H| H, H{ M | Link
Physical
H H, Hi M r Link
- Physical
Link-layer switch
Destination Router
A
M | Application
—
Hy M | Transport Hyh Hy M Network
H, Hy M | Network H, H, Hi M Link
Hi Hn Hy M | Link Physical
Physical

Figure 1.24 ¢ Hosts, routers, and link-layer switches; each contains a
different set of layers, reflecting their differences in functionality.

are capable of recognizing layer 2 addresses, such as Ethernet addresses. Note that
hosts implement all five layers; this is consistent with the view that the Internet
architecture puts much of its complexity at the edges of the network.

Figure 1.24 also illustrates the important concept of encapsulation. At the send-
ing host, an application-layer message (M in Figure 1.24) is passed to the transport
layer. In the simplest case, the transport layer takes the message and appends addi-
tional information (so-called transport-layer header information, H, in Figure 1.24)
that will be used by the receiver-side transport layer. The application-layer message
and the transport-layer header information together constitute the transport-layer
segment. The transport-layer segment thus encapsulates the application-layer mes-
sage. The added information might include information allowing the receiver-side
transport layer to deliver the message up to the appropriate application, and error-
detection bits that allow the receiver to determine whether bits in the message have
been changed in route. The transport layer then passes the segment to the network
layer, which adds network-layer header information (H, in Figure 1.24) such as
source and destination end system addresses, creating a network-layer datagram.
The datagram is then passed to the link layer, which (of course!) will add its own
link-layer header information and create a link-layer frame. Thus, we see that at

Hi

H

Hn Ht

Hn I"t
Hn I"t

55

M

M
M

56

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

each layer, a packet has two types of fields: header fields and a payload field. The
payload is typically a packet from the layer above.

A useful analogy here is the sending of an interoffice memo from one corporate
branch office to another via the public postal service. Suppose Alice, who is in one
branch office, wants to send a memo to Bob, who is in another branch office. The
memo is analogous to the application-layer message. Alice puts the memo in an
interoffice envelope with Bob’s name and department written on the front of the
envelope. The interoffice envelope is analogous to a transport-layer segment—it
contains header information (Bob’s name and department number) and it encapsu-
lates the application-layer message (the memo). When the sending branch-office
mailroom receives the interoffice envelope, it puts the interoffice envelope inside
yet another envelope, which is suitable for sending through the public postal serv-
ice. The sending mailroom also writes the postal address of the sending and receiv-
ing branch offices on the postal envelope. Here, the postal envelope is analogous to
the datagram—it encapsulates the transport-layer segment (the interoffice enve-
lope), which encapsulates the original message (the memo). The postal service
delivers the postal envelope to the receiving branch-office mailroom. There, the
process of de-encapsulation is begun. The mailroom extracts the interoffice memo
and forwards it to Bob. Finally, Bob opens the envelope and removes the memo.

The process of encapsulation can be more complex than that described above.
For example, a large message may be divided into multiple transport-layer segments
(which might themselves each be divided into multiple network-layer datagrams).
At the receiving end, such a segment must then be reconstructed from its constituent
datagrams.

1.6 Networks Under Attack

The Internet has become mission critical for many institutions today, including large
and small companies, universities, and government agencies. Many individuals also
rely on the Internet for many of their professional, social, and personal activities.
But behind all this utility and excitement, there is a dark side, a side where “bad
guys” attempt to wreak havoc in our daily lives by damaging our Internet-connected
computers, violating our privacy, and rendering inoperable the Internet services on
which we depend [Skoudis 2006].

The field of network security is about how the bad guys can attack computer
networks and about how we, soon-to-be experts in computer networking, can defend
networks against those attacks, or better yet, design new architectures that are
immune to such attacks in the first place. Given the frequency and variety of exist-
ing attacks as well as the threat of new and more destructive future attacks, network
security has become a central topic in the field of computer networking in recent
years. One of the features of this textbook is that it brings network security issues to

1.6 « NETWORKS UNDER ATTACK

the forefront. We’ll begin our foray into network security in this section, where we’ll
briefly describe some of the more prevalent and damaging attacks in today’s Inter-
net. Then, as we cover the various computer networking technologies and protocols
in greater detail in subsequent chapters, we’ll consider the various security-related
issues associated with those technologies and protocols. Finally, in Chapter 8, armed
with our newly acquired expertise in computer networking and Internet protocols,
we’ll study in-depth how computer networks can be defended against attacks, or
designed and operated to make such attacks impossible in the first place.

Since we don’t yet have expertise in computer networking and Internet protocols,
we’ll begin here by surveying some of today’s more prevalent security-related prob-
lems. This will whet our appetite for more substantial discussions in the upcoming
chapters. So we begin here by simply asking, what can go wrong? How are computer
networks vulnerable? What are some of the more prevalent types of attacks today?

The bad guys can put malware into your host via the Internet

We attach devices to the Internet because we want to receive/send data from/to
the Internet. This includes all kinds of good stuff, including Web pages, e-mail
messages, MP3s, telephone calls, live video, search engine results, and so on. But,
unfortunately, along with all that good stuff comes malicious stuff—collectively
known as malware—that can also enter and infect our devices. Once malware
infects our device it can do all kinds of devious things, including deleting our files;
installing spyware that collects our private information, such as social security num-
bers, passwords, and keystrokes, and then sends this (over the Internet, of course!)
back to the bad guys. Our compromised host may also be enrolled in a network of
thousands of similarly compromised devices, collectively known as a botnet, which
the bad guys control and leverage for spam e-mail distribution or distributed denial-
of-service attacks (soon to be discussed) against targeted hosts.

Much of the malware out there today is self-replicating: once it infects one
host, from that host it seeks entry into other hosts over the Internet, and from the
newly infected hosts, it seeks entry into yet more hosts. In this manner, self-
replicating malware can spread exponentially fast. For example, the number of
devices infected by the 2003 Saphire/Slammer worm doubled every 8.5 seconds in
the first few minutes after its outbreak, infecting more than 90 percent of vulnerable
hosts within 10 minutes [Moore 2003]. Malware can spread in the form of a virus, a
worm, or a Trojan horse [Skoudis 2004]. Viruses are malware that require some
form of user interaction to infect the user’s device. The classic example is an e-mail
attachment containing malicious executable code. If a user receives and opens such
an attachment, the user inadvertently runs the malware on the device. Typically,
such e-mail viruses are self-replicating: once executed, the virus may send an iden-
tical message with an identical malicious attachment to, for example, every recipi-
ent in the user’s address book. Worms (like the Slammer worm) are malware that
can enter a device without any explicit user interaction. For example, a user may be

57

58

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

running a vulnerable network application to which an attacker can send malware. In
some cases, without any user intervention, the application may accept the malware
from the Internet and run it, creating a worm. The worm in the newly infected
device then scans the Internet, searching for other hosts running the same vulnera-
ble network application. When it finds other vulnerable hosts, it sends a copy of
itself to those hosts. Finally, a Trojan horse is malware that is a hidden part of some
otherwise useful software. Today, malware, is pervasive and costly to defend
against. As you work through this textbook, we encourage you to think about the
following question: What can computer network designers do to defend Internet-
attached devices from malware attacks?

The bad guys can attack servers and network infrastructure

A broad class of security threats can be classified as denial-of-service (DoS)
attacks. As the name suggests, a DoS attack renders a network, host, or other piece
of infrastructure unusable by legitimate users. Web servers, e-mail servers, DNS
servers (discussed in Chapter 2), and institutional networks can all be subject to DoS
attacks. Internet DoS attacks are extremely common, with thousands of DoS attacks
occurring every year [Moore 2001; Mirkovic 2005]. Most Internet DoS attacks fall
into one of three categories:

* Vulnerability attack. This involves sending a few well-crafted messages to a vul-
nerable application or operating system running on a targeted host. If the right
sequence of packets is sent to a vulnerable application or operating system, the
service can stop or, worse, the host can crash.

* Bandwidth flooding. The attacker sends a deluge of packets to the targeted
host—so many packets that the target’s access link becomes clogged, preventing
legitimate packets from reaching the server.

* Connection flooding. The attacker establishes a large number of half-open or
fully open TCP connections (TCP connections are discussed in Chapter 3) at the
target host. The host can become so bogged down with these bogus connections
that it stops accepting legitimate connections.

Let’s now explore the bandwidth-flooding attack in more detail. Recalling our
delay and loss analysis discussion in section 1.4.2, it’s evident that if the server has an
access rate of R bps, then the attacker will need to send traffic at a rate of approxi-
mately R bps to cause damage. If R is very large, a single attack source may not be
able to generate enough traffic to harm the server. Furthermore, if all the traffic
emanates from a single source, an upstream router may be able to detect the attack and
block all traffic from that source before the traffic gets near the server. In a distributed
DoS (DDoS) attack, illustrated in Figure 1.25, the attacker controls multiple sources

1.6 « NETWORKS UNDER ATTACK

Slave

Slave \\“ !i : \
@ .‘ =
start é Victim
attack” Slave
.‘.

Attacker
v
e Slave

Slave

Figure 1.25 ¢ A distributed denial-of-service attack

and has each source blast traffic at the target. With this approach, the aggregate traffic
rate across all the controlled sources needs to be approximately R to cripple the serv-
ice. DDoS attacks leveraging botnets with thousands of comprised hosts are a com-
mon occurrence today [Mirkovic 2005]. DDos attacks are much harder to detect and
defend against than a DoS attack from a single host.

We encourage you to consider the following question as you work your way
through this book: What can computer network designers do to defend against DoS
attacks? We will see that different defenses are needed for the three types of DoS
attacks.

The bad guys can sniff packets

Many users today access the Internet via wireless devices, such as WiFi-connected
laptops or handheld devices with cellular Internet connections (covered in Chapter
6). While ubiquitous Internet access is extremely convenient and enables marvelous
new applications for mobile users, it also creates a major security vulnerability—by
placing a passive receiver in the vicinity of the wireless transmitter, that receiver can
obtain a copy of every packet that is transmitted! These packets can contain all kinds
of sensitive information, including passwords, social security numbers, trade
secrets, and private personal messages. A passive receiver that records a copy of
every packet that flies by is called a packet sniffer.

Sniffers can be deployed in wired environments as well. In wired broadcast
environments, as in many Ethernet LANs, a packet sniffer can obtain copies of

59

60

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

all packets sent over the LAN. As described in Section 1.2, cable access technolo-
gies also broadcast packets and are thus vulnerable to sniffing. Furthermore, a bad
guy who gains access to an institution’s access router or access link to the Internet
may be able to plant a sniffer that makes a copy of every packet going to/from the
organization. Sniffed packets can then be analyzed offline for sensitive information.

Packet-sniffing software is freely available at various Web sites and as commercial
products. Professors teaching a networking course have been known to assign lab exer-
cises that involve writing a packet-sniffing and application-layer data reconstruction
program. Indeed, the Wireshark [Wireshark 2009] labs associated with this text (see the
introductory Wireshark lab at the end of this chapter) use exactly such a packet sniffer!

Because packet sniffers are passive—that is, they do not inject packets into the
channel—they are difficult to detect. So, when we send packets into a wireless chan-
nel, we must accept the possibility that some bad guy may be recording copies of
our packets. As you may have guessed, some of the best defenses against packet
sniffing involve cryptography. We will examine cryptography as it applies to net-
work security in Chapter 8.

The bad guys can masquerade as someone you trust

It is surprisingly easy (you will have the knowledge to do so shortly as you proceed
through this text!) to create a packet with an arbitrary source address, packet con-
tent, and destination address and then transmit this hand-crafted packet into the
Internet, which will dutifully forward the packet to its destination. Imagine the
unsuspecting receiver (say an Internet router) who receives such a packet, takes the
(false) source address as being truthful, and then performs some command embed-
ded in the packet’s contents (say modifies its forwarding table). The ability to inject
packets into the Internet with a false source address is known as IP spoofing, and is
but one of many ways in which one user can masquerade as another user.

To solve this problem, we will need end-point authentication, that is, a mecha-
nism that will allow us to determine with certainty if a message originates from
where we think it does. Once again, we encourage you to think about how this can
be done for network applications and protocols as you progress through the chapters
of this book. We will explore mechanisms for end-point authentication in Chapter 8.

The bad guys can modify or delete messages

We end this brief survey of network attacks by describing man-in-the-middle
attacks. In this class of attacks, the bad guy is inserted into the communication path
between two communicating entities. Let’s refer to the communicating entities as
Alice and Bob, which might be actual human beings or might be network entities
such as two routers or two e-mail servers. The bad guy could be, for example, a com-
promised router in the communication path, or a software module residing on one of
the end hosts at a lower layer in the protocol stack. In the man-in-the-middle attack,

1.7« HISTORY OF COMPUTER NETWORKING AND THE INTERNET

the bad guy not only has the ability to sniff all packets that pass between Bob and
Alice, but can also inject, modify, or delete packets. In the jargon of network security,
a man-in-the-middle attack can compromise the infegrity of the data sent between
Alice and Bob. As we will see in Chapter 8, mechanisms that provide secrecy (pro-
tection against sniffing) and end-point authentication (allowing the receiver to verify
with certainty the originator of the message) do not necessarily provide data integrity.
So we will need yet another set of techniques to provide data integrity.

In closing this section, it’s worth considering how the Internet got to be such an
insecure place in the first place. The answer, in essence, is that the Internet was origi-
nally designed to be that way, based on the model of “a group of mutually trusting
users attached to a transparent network™ [Blumenthal 2001]—a model in which (by
definition) there is no need for security. Many aspects of the original Internet architec-
ture deeply reflect this notion of mutual trust. For example, the ability for one user to
send a packet to any other user is the default rather than a requested/granted capabil-
ity, and user identity is taken at declared face value, rather than being authenticated by
default.

But today’s Internet certainly does not involve “mutually trusting users.”
Nonetheless, today’s users still need to communicate when they don’t necessarily
trust each other, may wish to communicate anonymously, may communicate indi-
rectly through third parties (e.g., Web caches, which we’ll study in Chapter 2, or
mobility-assisting agents, which we’ll study in Chapter 6), and may distrust the
hardware, software, and even the air through which they communicate. We now
have many security-related challenges before us as we progress through this book:
we should seek defenses against sniffing, end-point masquerading, man-in-the-
middle attacks, DDoS attacks, malware, and more. We should keep in mind that
communication among mutually trusted users is the exception rather than the rule.
Welcome to the world of modern computer networking!

1.7 History of Computer Networking and
the Internet

Sections 1.1 through 1.6 presented an overview of the technology of computer net-
working and the Internet. You should know enough now to impress your family and
friends! However, if you really want to be a big hit at the next cocktail party, you
should sprinkle your discourse with tidbits about the fascinating history of the Inter-
net [Segaller 1998].

1.7.1 The Development of Packet Switching: 1961-1972

The field of computer networking and today’s Internet trace their beginnings
back to the early 1960s, when the telephone network was the world’s dominant

61

62

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

communication network. Recall from Section 1.3 that the telephone network uses
circuit switching to transmit information from a sender to a receiver—an appro-
priate choice given that voice is transmitted at a constant rate between sender
and receiver. Given the increasing importance (and great expense) of computers
in the early 1960s and the advent of timeshared computers, it was perhaps natu-
ral (at least with perfect hindsight!) to consider the question of how to hook com-
puters together so that they could be shared among geographically distributed
users. The traffic generated by such users was likely to be bursty—intervals of
activity, such as the sending of a command to a remote computer, followed by
periods of inactivity while waiting for a reply or while contemplating the received
response.

Three research groups around the world, each unaware of the others’ work
[Leiner 1998], began inventing packet switching as an efficient and robust alterna-
tive to circuit switching. The first published work on packet-switching techniques
was that of Leonard Kleinrock [Kleinrock 1961; Kleinrock 1964], then a graduate
student at MIT. Using queuing theory, Kleinrock’s work elegantly demonstrated the
effectiveness of the packet-switching approach for bursty traffic sources. In 1964,
Paul Baran [Baran 1964] at the Rand Institute had begun investigating the use of
packet switching for secure voice over military networks, and at the National Physi-
cal Laboratory in England, Donald Davies and Roger Scantlebury were also devel-
oping their ideas on packet switching.

The work at MIT, Rand, and the NPL laid the foundations for today’s Inter-
net. But the Internet also has a long history of a let’s-build-it-and-demonstrate-it
attitude that also dates back to the 1960s. J. C. R. Licklider [DEC 1990] and
Lawrence Roberts, both colleagues of Kleinrock’s at MIT, went on to lead the
computer science program at the Advanced Research Projects Agency (ARPA) in
the United States. Roberts published an overall plan for the ARPAnet [Roberts
1967], the first packet-switched computer network and a direct ancestor of today’s
public Internet. The early packet switches were known as interface message
processors (IMPs), and the contract to build these switches was awarded to the
BBN company. On Labor Day in 1969, the first IMP was installed at UCLA
under Kleinrock’s supervision, and three additional IMPs were installed shortly
thereafter at the Stanford Research Institute (SRI), UC Santa Barbara, and the
University of Utah (Figure 1.26). The fledgling precursor to the Internet was four
nodes large by the end of 1969. Kleinrock recalls the very first use of the network
to perform a remote login from UCLA to SRI, crashing the system [Kleinrock
2004].

By 1972, ARPAnet had grown to approximately 15 nodes and was given its first
public demonstration by Robert Kahn at the 1972 International Conference on Com-
puter Communications. The first host-to-host protocol between ARPAnet end sys-
tems, known as the network-control protocol (NCP), was completed [RFC 001].
With an end-to-end protocol available, applications could now be written. Ray Tom-
linson at BBN wrote the first e-mail program in 1972.

1.7« HISTORY OF COMPUTER NETWORKING AND THE INTERNET

|| Theyp
kh_' "hhlf_;;pl'ﬁ y

< 7

Figure 1.26 ¢ An early interface message processor (IMP) and
L. Kleinrock (Mark J. Terrill, AP/Wide World Photos)

1.7.2 Proprietary Networks and Internetworking: 1972-1980

The initial ARPAnet was a single, closed network. In order to communicate with an
ARPAnet host, one had to be actually attached to another ARPAnet IMP. In the early
to mid-1970s, additional stand-alone packet-switching networks besides ARPAnet
came into being:

* ALOHANet, a microwave network linking universities on the Hawaiian islands
[Abramson 1970], as well as DARPA’s packet-satellite [RFC 829] and packet-
radio networks [Kahn 1978]

63

64

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

* Telenet, a BBN commercial packet-switching network based on ARPAnet
technology

* Cyclades, a French packet-switching network pioneered by Louis Pouzin [Think
2009]

* Time-sharing networks such as Tymnet and the GE Information Services net-
work, among others, in the late 1960s and early 1970s [Schwartz 1977]

 IBM’s SNA (1969-1974), which paralleled the ARPAnet work [Schwartz
1977]

The number of networks was growing. With perfect hindsight we can see that
the time was ripe for developing an encompassing architecture for connecting net-
works together. Pioneering work on interconnecting networks (under the sponsor-
ship of the Defense Advanced Research Projects Agency (DARPA)), in essence
creating a network of networks, was done by Vinton Cerf and Robert Kahn [Cerf
1974]; the term internetting was coined to describe this work.

These architectural principles were embodied in TCP. The early versions of
TCP, however, were quite different from today’s TCP. The early versions of TCP
combined a reliable in-sequence delivery of data via end-system retransmission
(still part of today’s TCP) with forwarding functions (which today are performed
by IP). Early experimentation with TCP, combined with the recognition of the
importance of an unreliable, non-flow-controlled, end-to-end transport service
for applications such as packetized voice, led to the separation of IP out of TCP
and the development of the UDP protocol. The three key Internet protocols that
we see today—TCP, UDP, and IP—were conceptually in place by the end of the
1970s.

In addition to the DARPA Internet-related research, many other important net-
working activities were underway. In Hawaii, Norman Abramson was developing
ALOHAnet, a packet-based radio network that allowed multiple remote sites on
the Hawaiian Islands to communicate with each other. The ALOHA protocol
[Abramson 1970] was the first multiple-access protocol, allowing geographically
distributed users to share a single broadcast communication medium (a radio fre-
quency). Metcalfe and Boggs built on Abramson’s multiple-access protocol work
when they developed the Ethernet protocol [Metcalfe 1976] for wire-based shared
broadcast networks; see Figure 1.27. Interestingly, Metcalfe and Boggs’ Ethernet
protocol was motivated by the need to connect multiple PCs, printers, and shared
disks [Perkins 1994]. Twenty-five years ago, well before the PC revolution and the
explosion of networks, Metcalfe and Boggs were laying the foundation for today’s
PC LANSs. Ethernet technology represented an important step for internetworking
as well. Each Ethernet local area network was itself a network, and as the number
of LANs proliferated, the need to internetwork these LANs together became
increasingly important. We’ll discuss Ethernet, ALOHA, and other LAN technolo-
gies in detail in Chapter 5.

1.7« HISTORY OF COMPUTER NETWORKING AND THE INTERNET 65

™ ETHER 7

Figure 1.27 ¢ Metcalfe's original conception of the Ethernet

1.7.3 A Proliferation of Networks: 1980-1990

By the end of the 1970s, approximately two hundred hosts were connected to the
ARPAnet. By the end of the 1980s the number of hosts connected to the public
Internet, a confederation of networks looking much like today’s Internet, would
reach a hundred thousand. The 1980s would be a time of tremendous growth.

Much of that growth resulted from several distinct efforts to create computer
networks linking universities together. BITNET provided e-mail and file transfers
among several universities in the Northeast. CSNET (computer science network)
was formed to link university researchers who did not have access to ARPAnet. In
1986, NSFNET was created to provide access to NSF-sponsored supercomputing
centers. Starting with an initial backbone speed of 56 kbps, NSFNET’s backbone
would be running at 1.5 Mbps by the end of the decade and would serve as a pri-
mary backbone linking regional networks.

In the ARPAnet community, many of the final pieces of today’s Internet archi-
tecture were falling into place. January 1, 1983 saw the official deployment of
TCP/IP as the new standard host protocol for ARPAnet (replacing the NCP protocol).
The transition [RFC 801] from NCP to TCP/IP was a flag day event—all hosts were
required to transfer over to TCP/IP as of that day. In the late 1980s, important exten-
sions were made to TCP to implement host-based congestion control [Jacobson
1988]. The DNS, used to map between a human-readable Internet name (for exam-
ple, gaia.cs.umass.edu) and its 32-bit IP address, was also developed [RFC 1034].

Paralleling this development of the ARPAnet (which was for the most part a
US effort), in the early 1980s the French launched the Minitel project, an ambitious

66

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

plan to bring data networking into everyone’s home. Sponsored by the French
government, the Minitel system consisted of a public packet-switched network
(based on the X.25 protocol suite), Minitel servers, and inexpensive terminals with
built-in low-speed modems. The Minitel became a huge success in 1984 when the
French government gave away a free Minitel terminal to each French household
that wanted one. Minitel sites included free sites—such as a telephone directory
site—as well as private sites, which collected a usage-based fee from each user. At
its peak in the mid 1990s, it offered more than 20,000 services, ranging from home
banking to specialized research databases. It was used by over 20 percent of
France’s population, generated more than $1 billion in revenue each year, and cre-
ated 10,000 jobs. The Minitel was in a large proportion of French homes 10 years
before most Americans had ever heard of the Internet.

1.7.4 The Internet Explosion: The 1990s

The 1990s were ushered in with a number of events that symbolized the continued
evolution and the soon-to-arrive commercialization of the Internet. ARPAnet, the
progenitor of the Internet, ceased to exist. MILNET and the Defense Data Network
had grown in the 1980s to carry most of the US Department of Defense—related
traffic and NSFNET had begun to serve as a backbone network connecting regional
networks in the United States and national networks overseas. In 1991, NSFNET
lifted its restrictions on the use of NSFNET for commercial purposes. NSFNET
itself would be decommissioned in 1995, with Internet backbone traffic being car-
ried by commercial Internet Service Providers.

The main event of the 1990s, however, was to be the emergence of the World
Wide Web application, which brought the Internet into the homes and businesses of
millions of people worldwide. The Web served as a platform for enabling and
deploying hundreds of new applications, that we take for granted today. For a brief
history of the early days of the Web, see [W3C 1995].

The Web was invented at CERN by Tim Berners-Lee between 1989 and 1991
[Berners-Lee 1989], based on ideas originating in earlier work on hypertext from
the 1940s by Vannevar Bush [Bush 1945] and since the 1960s by Ted Nelson
[Xanadu 2009]. Berners-Lee and his associates developed initial versions of HTML,
HTTP, a Web server, and a browser—the four key components of the Web. Around
the end of 1993 there were about two hundred Web servers in operation, this collec-
tion of servers being just a harbinger of what was about to come. At about this time
several researchers were developing Web browsers with GUI interfaces, including
Marc Andreessen, who led the development of the popular GUI browser Mosaic. In
1994 Marc Andreessen and Jim Clark formed Mosaic Communications, which later
became Netscape Communications Corporation [Cusumano 1998; Quittner 1998].
By 1995, university students were using Mosaic and Netscape browsers to surf the
Web on a daily basis. At about this time companies—big and small—began to oper-
ate Web servers and transact commerce over the Web. In 1996, Microsoft started to

1.7« HISTORY OF COMPUTER NETWORKING AND THE INTERNET

make browsers, which started the browser war between Netscape and Microsoft,
which Microsoft won a few years later [Cusumano 1998].

The second half of the 1990s was a period of tremendous growth and innova-
tion for the Internet, with major corporations and thousands of startups creating
Internet products and services. Internet e-mail continued to evolve with feature-rich
mail readers providing address books, attachments, hot links, and multimedia trans-
port. By the end of the millennium the Internet was supporting hundreds of popular
applications, including four killer applications:

* E-mail, including attachments and Web-accessible e-mail
* The Web, including Web browsing and Internet commerce
* Instant messaging, with contact lists, pioneered by ICQ

* Peer-to-peer file sharing of MP3s, pioneered by Napster

Interestingly, the first two killer applications came from the research community,
whereas the last two were created by a few young entrepreneurs.

The period from 1995 to 2001 was a roller-coaster ride for the Internet in the
financial markets. Before they were even profitable, hundreds of Internet startups
made initial public offerings and started to be traded in a stock market. Many com-
panies were valued in the billions of dollars without having any significant revenue
streams. The Internet stocks collapsed in 2000-2001, and many startups shut down.
Nevertheless, a number of companies emerged as big winners in the Internet space,
including Microsoft, Cisco, Yahoo, e-Bay, Google, and Amazon.

1.7.5 Recent Developments

Innovation in computer networking continues at a rapid pace. Advances are being
made on all fronts, including deployment of new applications, content distribution,
Internet telephony, higher transmission speeds in LANS, and faster routers. But three
developments merit special attention: a proliferation of high-speed access network-
ing (including wireless access), security, and P2P networking.

As discussed in Section 1.2, increasing penetration of broadband residential
Internet access via cable modem and DSL set the stage for a wealth of new multi-
media applications, including voice and video over IP [Skype 2009], video sharing
[YouTube 2009], and television over IP [PPLive 2009]. The increasing ubiquity of
high-speed (11 Mbps and higher) public WiFi networks and medium-speed (hun-
dreds of kbps) Internet access via cellular telephony networks is not only making it
possible to remain constantly connected, but also enabling an exciting new set of
location-specific services. We’ll cover wireless networks and mobility in Chapter 6.

Following a series of denial-of-service attacks on prominent Web servers in the
late 1990s and the proliferation of worm attacks (e.g., the Blaster worm), network
security has become an immensely important topic. These attacks have resulted in

67

68

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

the development of intrusion detection systems to provide early warning of an
attack, and the use of firewalls to filter out unwanted traffic before it enters the net-
work. We’ll cover a number of important security-related topics in Chapter 8.

The last innovation of which we take special note is P2P networking. A P2P net-
working application exploits the resources in users’ computers—storage, content,
CPU cycles, and human presence—and has significant autonomy from central
servers. Typically, the users’ computers (i.e., the peers) have intermittent connectiv-
ity. There have been numerous P2P success stories in the past few years, including
P2P file sharing (Napster, Kazaa, Gnutella, eDonkey, LimeWire, and so on), file dis-
tribution (BitTorrent), Voice over IP (Skype), and IPTV (PPLive, ppStream). We’ll
discuss many of these P2P applications in Chapter 2.

1.8 Summary

In this chapter we’ve covered a tremendous amount of material! We’ve looked at the
various pieces of hardware and software that make up the Internet in particular and
computer networks in general. We started at the edge of the network, looking at end
systems and applications, and at the transport service provided to the applications
running on the end systems. We also looked at the link-layer technologies and phys-
ical media typically found in the access network. We then dove deeper inside the
network, into the network core, identifying packet switching and circuit switching
as the two basic approaches for transporting data through a telecommunication net-
work, and we examined the strengths and weaknesses of each approach. We also
examined the structure of the global Internet, learning that the Internet is a network
of networks. We saw that the Internet’s hierarchical structure, consisting of higher-
and lower-tier ISPs, has allowed it to scale to include thousands of networks.

In the second part of this introductory chapter, we examined several topics central
to the field of computer networking. We first examined the causes of delay, through-
put and packet loss in a packet-switched network. We developed simple quantitative
models for transmission, propagation, and queuing delays as well as for throughput;
we’ll make extensive use of these delay models in the homework problems through-
out this book. Next we examined protocol layering and service models, key architec-
tural principles in networking that we will also refer back to throughout this book. We
also surveyed some of the more prevalent security attacks in the Internet day. We fin-
ished our introduction to networking with a brief history of computer networking. The
first chapter in itself constitutes a mini-course in computer networking.

So, we have indeed covered a tremendous amount of ground in this first chap-
ter! If you’re a bit overwhelmed, don’t worry. In the following chapters we’ll revisit
all of these ideas, covering them in much more detail (that’s a promise, not a
threat!). At this point, we hope you leave this chapter with a still-developing intu-
ition for the pieces that make up a network, a still-developing command of the

1.8

vocabulary of networking (don’t be shy about referring back to this chapter), and an
ever-growing desire to learn more about networking. That’s the task ahead of us for
the rest of this book.

Road-Mapping This Book

Before starting any trip, you should always glance at a road map in order to become
familiar with the major roads and junctures that lie ahead. For the trip we are about
to embark on, the ultimate destination is a deep understanding of the how, what, and
why of computer networks. Our road map is the sequence of chapters of this book:

Computer Networks and the Internet
Application Layer

Transport Layer

Network Layer

Link Layer and Local Area Networks
Wireless and Mobile Networks
Multimedia Networking

Security in Computer Networks
Network Management

WO R WD -

Chapters 2 through 5 are the four core chapters of this book. You should notice
that these chapters are organized around the top four layers of the five-layer Internet
protocol stack, one chapter for each layer. Further note that our journey will begin at
the top of the Internet protocol stack, namely, the application layer, and will work
its way downward. The rationale behind this top-down journey is that once we
understand the applications, we can understand the network services needed to sup-
port these applications. We can then, in turn, examine the various ways in which
such services might be implemented by a network architecture. Covering applica-
tions early thus provides motivation for the remainder of the text.

The second half of the book—Chapters 6 through 9—zooms in on four enor-
mously important (and somewhat independent) topics in modern computer network-
ing. In Chapter 6, we examine wireless and mobile networks, including wireless
LANSs (including WiFi, WiMAX, and Bluetooth), Cellular telephony networks
(including GSM), and mobility (in both IP and GSM networks). In Chapter 7 (Mul-
timedia Networking) we examine audio and video applications such as Internet
phone, video conferencing, and streaming of stored media. We also look at how a
packet-switched network can be designed to provide consistent quality of service to
audio and video applications. In Chapter 8 (Security in Computer Networks), we
first look at the underpinnings of encryption and network security, and then we
examine how the basic theory is being applied in a broad range of Internet contexts.
The last chapter (Network Management) examines the key issues in network man-
agement as well as the primary Internet protocols used for network management.

SUMMARY

69

70 CHAPTER 1T o COMPUTER NETWORKS AND THE INTERNET

m Homework Problems and Questions

Chapter 1 Review Questions
SECTION 1.1

R1.

R2.

What is the difference between a host and an end system? List the types of
end systems. Is a Web server an end system?

The word protocol is often used to describe diplomatic relations. Give an
example of a diplomatic protocol.

SECTION 1.2

R3.

R4.

RS.

R6.

R7.

R8.
RO.

R10.

What is a client program? What is a server program? Does a server program
request and receive services from a client program?

List six access technologies. Classify each one as residential access, company
access, or mobile access.

Is HFC transmission rate dedicated or shared among users? Are collisions
possible in a downstream HFC channel? Why or why not?

List the available residential access technologies in your city. For each type
of access, provide the advertised downstream rate, upstream rate, and
monthly price.

What is the transmission rate of Ethernet LANs? For a given transmission
rate, can each user on the LAN continuously transmit at that rate?

What are some of the physical media that Ethernet can run over?

Dial-up modems, HFC, DSL and FTTH are all used for residential access.
For each of these access technologies, provide a range of transmission rates
and comment on whether the transmission rate is shared or dedicated.
Describe the most popular wireless Internet access technologies today. Com-
pare and contrast them.

SECTION 1.3

R11.

R12.

R13.

What advantage does a circuit-switched network have over a packet-switched
network? What advantages does TDM have over FDM in a circuit-switched
network?

Why is it said that packet switching employs statistical multiplexing? Con-
trast statistical multiplexing with the multiplexing that takes place in TDM.

Suppose there is exactly one packet switch between a sending host and a
receiving host. The transmission rates between the sending host and the
switch and between the switch and the receiving host are R, and R,, respec-
tively. Assuming that the switch uses store-and-forward packet switching,
what is the total end-to-end delay to send a packet of length L? (Ignore
queuing, propagation delay, and processing delay.)

R14.
R15.

HOMEWORK PROBLEMS AND QUESTIONS

What is the key distinguishing difference between a tier-1 ISP and a tier-2 ISP?

Suppose users share a 2 Mbps link. Also suppose each user transmits continu-
osly at 1 Mbps when transmitting, but each user transmits only 20 percent of
the time. (See the discussion of statistical multiplexing in Section 1.3.)

a. When circuit switching is used, how many users can be supported?

b. For the remainder of this problem, suppose packet switching is used. Why
will there be essentially no queuing delay before the link if two or fewer
users transmit at the same time? Why will there be a queuing delay if
three users transmit at the same time?

c. Find the probability that a given user is transmitting.

d. Suppose now there are three users. Find the probability that at any given
time, all three users are transmitting simultaneously. Find the fraction of
time during which the queue grows.

SECTION 1.4

R16.

R17.

R18.

R19.

R20.

Consider sending a packet from a source host to a destination host over a
fixed route. List the delay components in the end-to-end delay. Which of
these delays are constant and which are variable?

Visit the Transmission Versus Propagation Delay applet at the companion
Web site. Among the rates, propagation delay, and packet sizes available,
find a combination for which the sender finishes transmitting before the first
bit of the packet reaches the receiver. Find another combination for which
the first bit of the packet reaches the receiver before the sender finishes
transmitting.

How long does it take a packet of length 1,000 bytes to propagate over a link
of distance 2,500 km, propagation speed 2.5 - 103 m/s, and transmission rate
2 Mbps? More generally, how long does it take a packet of length L to propa-
gate over a link of distance d, propagation speed s, and transmission rate R
bps? Does this delay depend on packet length? Does this delay depend on
transmission rate?

Suppose Host A wants to send a large file to Host B. The path from Host A to

Host B has three links, of rates R, = 500 kbps, R, = 2 Mbps, and Ry=1 Mbps.

a. Assuming no other traffic in the network, what is the throughput for the
file transfer.

b. Suppose the file is 4 million bytes. Dividing the file size by the through
put, roughly how long will it take to transfer the file to Host B?

c. Repeat (a) and (b), but now with R, reduced to 100 kbps.
Suppose end system A wants to send a large file to end system B. At a very
high level, describe how end system A creates packets from the file. When

one of these packets arrives to a packet switch, what information in the
packet does the switch use to determine the link onto which the packet is

71

72

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

forwarded? Why is packet switching in the Internet analogous to driving from
one city to another and asking directions along the way?

R21. Visit the Queuing and Loss applet at the companion Web site. What is the
maximum emission rate and the minimum transmission rate? With those
rates, what is the traffic intensity? Run the applet with these rates and deter-
mine how long it takes for packet loss to occur. Then repeat the experiment a
second time and determine again how long it takes for packet loss to occur.
Are the values different? Why or why not?

SECTION 1.5

R22. List five tasks that a layer can perform. Is it possible that one (or more) of
these tasks could be performed by two (or more) layers?

R23. What are the five layers in the Internet protocol stack? What are the principal
responsibilities of each of these layers?

R24. What is an application-layer message? A transport-layer segment? A network-
layer datagram? A link-layer frame?

R25. Which layers in the Internet protocol stack does a router process? Which
layers does a link-layer switch process? Which layers does a host process?

SECTION 1.6
R26. What is the difference between a virus, a worm, and a Trojan horse?

R27. Describe how a botnet can be created, and how it can be used for a DDoS
attack.

R28. Suppose Alice and Bob are sending packets to each other over a computer
network. Suppose Trudy positions herself in the network so that she can
capture all the packets sent by Alice and send whatever she wants to Bob;
she can also capture all the packets sent by Bob and send whatever she
wants to Alice. List some of the malicious things Trudy can do from this
position.

EE Problems

P1. Design and describe an application-level protocol to be used between an
automatic teller machine and a bank’s centralized computer. Your protocol
should allow a user’s card and password to be verified, the account balance
(which is maintained at the centralized computer) to be queried, and an
account withdrawal to be made (that is, money disbursed to the user). Your
protocol entities should be able to handle the all-too-common case in which
there is not enough money in the account to cover the withdrawal. Specify
your protocol by listing the messages exchanged and the action taken by the

P2.

P3.

P4.

PS.

PROBLEMS

automatic teller machine or the bank’s centralized computer on transmission

and receipt of messages. Sketch the operation of your protocol for the case of a
simple withdrawal with no errors, using a diagram similar to that in Figure 1.2.
Explicitly state the assumptions made by your protocol about the underlying

end-to-end transport service.

Consider an application that transmits data at a steady rate (for example, the
sender generates an N-bit unit of data every k time units, where & is small and
fixed). Also, when such an application starts, it will continue running for a
relatively long period of time. Answer the following questions, briefly justi-
fying your answer:

a. Would a packet-switched network or a circuit-switched network be more
appropriate for this application? Why?

b. Suppose that a packet-switched network is used and the only traffic in
this network comes from such applications as described above. Further-
more, assume that the sum of the application data rates is less than the
capacities of each and every link. Is some form of congestion control
needed? Why?

Consider the circuit-switched network in Figure 1.12. Recall that there are n
circuits on each link.

a. What is the maximum number of simultaneous connections that can be in
progress at any one time in this network?

b. Suppose that all connections are between the switch in the upper-left-hand
corner and the switch in the lower-right-hand corner. What is the maxi-
mum number of simultaneous connections that can be in progress?

Review the car-caravan analogy in Section 1.4. Assume a propagation speed
of 100 km/hour.

a. Suppose the caravan travels 150 km, beginning in front of one tollbooth,
passing through a second tollbooth, and finishing just after a third toll-
booth. What is the end-to-end delay?

b. Repeat (a), now assuming that there are eight cars in the caravan instead of
ten.

This elementary problem begins to explore propagation delay and transmis-
sion delay, two central concepts in data networking. Consider two hosts, A
and B, connected by a single link of rate R bps. Suppose that the two hosts
are separated by m meters, and suppose the propagation speed along the link
is s meters/sec. Host A is to send a packet of size L bits to Host B.

a. Express the propagation delay, dpmp, in terms of m and s.

b. Determine the transmission time of the packet, d

iranse 1N terms of L and R.

c. Ignoring processing and queuing delays, obtain an expression for the end-
to-end delay.

73

74 CHAPTER 1T o COMPUTER NETWORKS AND THE INTERNET

P6.

P7.

P8.

PO.

d. Suppose Host A begins to transmit the packet at time ¢ =0. Attime t =d
where is the last bit of the packet?

e. Suppose dpmp is greater thand, . Attime t =d where is the first bit of

trans trans’
the packet?

f. Suppose dpmp islessthand . Attimet=d where is the first bit of

trans” trans’
the packet?

g. Suppose s =2.5 - 108, L = 120 bits, and R = 56 kbps. Find the distance m
sothatd __equals d

prop trans®
In this problem we consider sending real-time voice from Host A to Host B
over a packet-switched network (VoIP). Host A converts analog voice to a
digital 64 kbps bit stream on the fly. Host A then groups the bits into 56-byte
packets. There is one link between Host A and B; its transmission rate is 2
Mbps and its propagation delay is 10 msec. As soon as Host A gathers a
packet, it sends it to Host B. As soon as Host B receives an entire packet, it
converts the packet’s bits to an analog signal. How much time elapses from
the time a bit is created (from the original analog signal at Host A) until the
bit is decoded (as part of the analog signal at Host B)?

Suppose users share a 3 Mbps link. Also suppose each user requires 150 kbps
when transmitting, but each user transmits only 10 percent of the time. (See
the discussion of statistical multiplexing in Section 1.3.)

a. When circuit switching is used, how many users can be supported?

b. For the remainder of this problem, suppose packet switching is used. Find
the probability that a given user is transmitting.

c. Suppose there are 120 users. Find the probability that at any given time,
exactly n users are transmitting simultaneously. (Hint: Use the binomial
distribution.)

d. Find the probability that there are 21 or more users transmitting
simultaneously.

Consider the discussion in Section 1.3 of statistical multiplexing in which an
example is provided with a 1 Mbps link. Users are generating data at a rate
of 100 kbps when busy, but are busy generating data only with probability
p =0.1. Suppose that the 1 Mbps link is replaced by a 1 Gbps link.

a. What is N, the maximum number of users that can be supported
simultaneously under circuit switching?

b. Now consider packet switching and a user population of M users. Give a
formula (in terms of p, M, N) for the probability that more than N users are
sending data.

Consider a packet of length L which begins at end system A and travels over
three links to a destination end system. These three links are connected by
two packet switches. Let d, s, and R, denote the length, propagation speed,

P10.

P11.

P12.

P13.

P14.

P15.

PROBLEMS

and the transmission rate of link 7, for i = 1, 2, 3. The packet switch delays
each packet by dpm,. Assuming no queuing delays, in terms of d,, s, R,
(i=1,2,3), and L, what is the total end-to-end delay for the packet? Suppose
now the packet is 1,500 bytes, the propagation speed on both links is 2.5 - 103
m/s, the transmission rates of all three links are 2 Mbps, the packet switch
processing delay is 3 msec, the length of the first link is 5,000 km, the length
of the second link is 4,000 km, and the length of the last link is 1,000 km. For
these values, what is the end-to-end delay?

In the above problem, suppose R, = R, = R, = R and dproc = 0. Further sup-
pose the packet switch does not store-and-forward packets but instead imme-
diately transmits each bit it receives before waiting for the packet to arrive.
What is the end-to-end delay?

A packet switch receives a packet and determines the outbound link to which
the packet should be forwarded. When the packet arrives, one other packet is
halfway done being transmitted on this outbound link and four other packets
are waiting to be transmitted. Packets are transmitted in order of arrival.
Suppose all packets are 1,500 bytes and the link rate is 2 Mbps. What is the
queuing delay for the packet? More generally, what is the queuing delay
when all packets have length L, the transmission rate is R, x bits of the
currently-being-transmitted packet have been transmitted, and n packets are
already in the queue?

Suppose N packets arrive simultaneously to a link at which no packets are
currently being transmitted or queued. Each packet is of length L and the link
has transmission rate R. What is the average queuing delay for the N packets?

Consider the queuing delay in a router buffer (preceding an outbound link).
Suppose all packets are L bits, the transmission rate is R bps, and that N
packets simultaneously arrive at the buffer every LN/R seconds. Find the
average queuing delay of a packet. (Hint: The queuing delay for the first
packet is zero; for the second packet L/R; for the third packet 2L/R. The Nth
packet has already been transmitted when the second batch of packets arrives.)

Consider the queuing delay in a router buffer. Let / denote traffic intensity;
that is, I = La/R. Suppose that the queuing delay takes the form IL/R (1 —I)
for/< 1.

a. Provide a formula for the total delay, that is, the queuing delay plus the
transmission delay.

b. Plot the total delay as a function of L/R.

Let a denote the rate of packets arriving at a link in packets/sec, and let u
denote the link’s transmission rate in packets/sec. Based on the formula for
the total delay (i.e., the queuing delay plus the transmission delay) derived in
the previous problem, derive a formula for the total delay in terms of a and p.

75

76 CHAPTER 1T o COMPUTER NETWORKS AND THE INTERNET

P16.

P17.

P18.

P19.

P20.

P21.

Consider a router buffer preceding an outbound link. In this problem, you will
use Little’s formula, a famous formula from queuing theory. Let N denote the
average number of packets in the buffer plus the packet being transmitted. Let
a denote the rate of packets arriving at the link. Let d denote the average total
delay (i.e., the queuing delay plus the transmission delay) experienced by a
packet. Little’s formula is N = a - d. Suppose that on average, the buffer con-
tains 10 packets, and the average packet queuing delay is 10 msec. The link’s
transmission rate is 100 packets/sec. Using Little’s formula, what is the aver-
age packet arrival rate, assuming there is no packet loss?

a. Generalize the end-to-end delay formula in Section 1.4.3 for heteroge-
neous processing rates, transmission rates, and propagation delays.

b. Repeat (a), but now also suppose that there is an average queuing delay of

d queue at each node.

Perform a Traceroute between source and destination on the same continent
at three different hours of the day.

a. Find the average and standard deviation of the round-trip delays at each of
the three hours.

b. Find the number of routers in the path at each of the three hours. Did the
paths change during any of the hours?

c. Try to identify the number of ISP networks that the Traceroute packets pass
through from source to destination. Routers with similar names and/or similar
IP addresses should be considered as part of the same ISP. In your experiments,
do the largest delays occur at the peering interfaces between adjacent ISPs?

d. Repeat the above for a source and destination on different continents.
Compare the intra-continent and inter-continent results.

Consider the throughput example corresponding to Figure 1.20(b). Now
suppose that there are M client-server pairs rather than 10. Denote R, R , and
R for the rates of the server links, client links, and network link. Assume all
other links have abundant capacity and that there is no other traffic in the
network besides the traffic generated by the M client-server pairs. Derive a
general expression for throughput in terms of R, R , R, and M.

Consider Figure 1.19(b). Now suppose that there are M paths between the
server and the client. No two paths share any link. Path k (k=1, ..., M) con-
sists of N links with transmission rates RY, Ry, . . ., R, If the server can only
use one path to send data to the client, what is the maximum throughput that
the server can achieve? If the server can use all M paths to send data, what is
the maximum throughput that the server can achieve?

Consider Figure 1.19(b). Suppose that each link between the server and the
client has a packet loss probability p, and the packet loss probabilities for
these links are independent. What is the probability that a packet (sent by the
server) is successfully received by the receiver? If a packet is lost in the path

pP22.

P23.

p24.

P25.

P26.

PROBLEMS

from the server to the client, then the server will re-transmit the packet. On
average, how many times will the server re-transmit the packet in order for
the client to successfully receive the packet?

Consider Figure 1.19(a). Assume that we know the bottleneck link along the
path from the server to the client is the first link with rate R_bits/sec. Suppose
we send a pair of packets back to back from the server to the client, and there
is no other traffic on this path. Assume each packet of size L bits, and both
links have the same propagation delay dpmp.
a. What is the packet inter-arrival time at the destination? That is, how much
time elapses from when the last bit of the first packet arrives until the last

bit of the second packet arrives?

b. Now assume that the second link is the bottleneck link (i.e., R, < R)). Is it
possible that the second packet queues at the input queue of the second
link? Explain. Now suppose that the server sends the second packet T sec-
onds after sending the first packet. How large must 7 be to ensure no
queuing before the second link? Explain.

Suppose you would like to urgently deliver 40 terabytes data from Boston to
Los Angeles. You have available a 100 Mbps dedicated link for data transfer.
Would you prefer to transmit the data via this link or instead use FedEx over-
night delivery? Explain.

Suppose two hosts, A and B, are separated by 20,000 kilometers and are
connected by a direct link of R =2 Mbps. Suppose the propagation speed
over the link is 2.5 - 10® meters/sec.

a. Calculate the bandwidth-delay product, R - dpmp.
b. Consider sending a file of 800,000 bits from Host A to Host B. Suppose
the file is sent continuously as one large message. What is the maximum

number of bits that will be in the link at any given time?
c. Provide an interpretation of the bandwidth-delay product.

d. What is the width (in meters) of a bit in the link? Is it longer than a foot-
ball field?

e. Derive a general expression for the width of a bit in terms of the propaga-
tion speed s, the transmission rate R, and the length of the link m.

Referring to problem P24, suppose we can modify R. For what value of R is

the width of a bit as long as the length of the link?

Consider problem P24 but now with a link of R = 1 Gbps.

a. Calculate the bandwidth-delay product, R - dpm o
b. Consider sending a file of 800,000 bits from Host A to Host B. Suppose
the file is sent continuously as one big message. What is the maximum

number of bits that will be in the link at any given time?
c. What is the width (in meters) of a bit in the link?

77

78

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

P27.

P28.

P29.

P30.

b.

Refer again to problem P24.
a. How long does it take to send the file, assuming it is sent continuously?

b. Suppose now the file is broken up into 20 packets with each packet con-
taining 40,000 bits. Suppose that each packet is acknowledged by the
receiver and the transmission time of an acknowledgment packet is
negligible. Finally, assume that the sender cannot send a packet until the
preceding one is acknowledged. How long does it take to send the file?

c. Compare the results from (a) and (b).

Suppose there is a 10 Mbps microwave link between a geostationary satellite
and its base station on Earth. Every minute the satellite takes a digital photo and
sends it to the base station. Assume a propagation speed of 2.4 - 108 meters/sec.

a. What is the propagation delay of the link?

b. What is the bandwidth-delay product, R - d oro p?

c. Let x denote the size of the photo. What is the minimum value of x for the
microwave link to be continuously transmitting?

Consider the airline travel analogy in our discussion of layering in Section 1.5,
and the addition of headers to protocol data units as they flow down the proto-
col stack. Is there an equivalent notion of header information that is added to
passengers and baggage as they move down the airline protocol stack?

In modern packet-switched networks, the source host segments long,
application-layer messages (for example, an image or a music file) into
smaller packets and sends the packets into the network. The receiver then
reassembles the packets back into the original message. We refer to this
process as message segmentation. Figure 1.28 illustrates the end-to-end
transport of a message with and without message segmentation. Consider a
message that is 8 - 10° bits long that is to be sent from source to destination in
Figure 1.28. Suppose each link in the figure is 2 Mbps. Ignore propagation,
queuing, and processing delays.

(=<3 Message ==

Source Packet switch Packet switch Destination
Packet

=\ y N =

Source Packet switch Packet switch Destination

Figure 1.28 ¢ End+to-end message transport: (a) without message
segmentation; (b) with message segmentation.

P31.

P32.

WIRESHARK LAB

a. Consider sending the message from source to destination without message
segmentation. How long does it take to move the message from the source
host to the first packet switch? Keeping in mind that each switch uses
store-and-forward packet switching, what is the total time to move the
message from source host to destination host?

b. Now suppose that the message is segmented into 4,000 packets, with each
packet being 2,000 bits long. How long does it take to move the first
packet from source host to the first switch? When the first packet is being
sent from the first switch to the second switch, the second packet is being
sent from the source host to the first switch. At what time will the second
packet be fully received at the first switch?

c. How long does it take to move the file from source host to destination host
when message segmentation is used? Compare this result with your
answer in part (a) and comment.

d. Discuss the drawbacks of message segmentation.

Experiment with the Message Segmentation applet at the book’s Web site. Do
the delays in the applet correspond to the delays in the previous problem?
How do link propagation delays affect the overall end-to-end delay for packet
switching (with message segmentation) and for message switching?

Consider sending a large file of F bits from Host A to Host B. There are three
links (and two switches) between A and B, and the links are uncongested
(that is, no queuing delays). Host A segments the file into segments of S bits
each and adds 80 bits of header to each segment, forming packets of L =40 + §
bits. Each link has a transmission rate of R bps. Find the value of S that mini-
mizes the delay of moving the file from Host A to Host B. Disregard propaga-
tion delay.

EE Discussion Questions

DI.
D2.

D3.

D4.

Ds.

What types of wireless cellular services are available in your area?

Using the 802.11 wireless LAN technology, design a home network for your
home or your parents’ home. List the specific product models in your home
network along with their costs.

Describe PC-to-PC Skype services. Try out Skype’s PC-to-PC video service
and report back on the experience.

Skype offers a service that allows you to make a phone call from a PC to an
ordinary phone. This means that the voice call must pass through both the
Internet and through a telephone network. Discuss how this might be done.

What is Short Message Service (SMS)? In what countries/continents is this
service popular? Is it possible to send an SMS message from a Web site to a
portable phone?

79

80

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

D6. What is streaming of stored video? What are some popular Web sites that
provide streaming video today?

D7. What is P2P streaming of live video? What are some popular Web sites that
provide this service today?

DS. Find five companies that provide P2P file-sharing services. For each com-
pany, what kind of files (that is, content) does it handle?

D9. Who invented ICQ, the first instant messaging service? When was it invented
and how old were the inventors? Similarly, who invented Napster? When was
it invented and how old were the inventors?

D10. Compare and contrast WiFi wireless Internet access and 3G wireless Internet
access. What are the bit rates of the two services? What are the costs? Discuss
roaming and access ubiquity.

DI1. Why is it that the original Napster P2P file-sharing service no longer exists?
What is the RTAA and what measures is it taking to limit P2P file-sharing of
copyrighted content? What is the difference between direct and indirect copy-
right infringement?

D12. What is BitTorrent? How is it fundamentally different from a P2P file-sharing
service such as eDonkey, LimeWire, or Kazaa?

D13. Do you think that 10 years from now there will still be widespread sharing of
copyrighted files over computer networks? Why or why not? Elaborate.

Wireshark Lab

“Tell me and I forget. Show me and I remember. Involve me and I understand.”
Chinese proverb

One’s understanding of network protocols can often be greatly deepened by seeing
them in action and by playing around with them—observing the sequence of mes-
sages exchanged between two protocol entities, delving into the details of protocol
operation, causing protocols to perform certain actions, and observing these actions
and their consequences. This can be done in simulated scenarios or in a real network
environment such as the Internet. The Java applets at the textbook Web site take the
first approach. In the Wireshark labs, we’ll take the latter approach. You’ll run net-
work applications in various scenarios using a computer on your desk, at home, or
in a lab. You’ll observe the network protocols in your computer, interacting and
exchanging messages with protocol entities executing elsewhere in the Internet.
Thus, you and your computer will be an integral part of these live labs. You’ll
observe—and you’ll learn—by doing.

81

CHAPTER T o

COMPUTER NETWORKS AND THE INTERNET

1@ (Untitled) - Ethereal
lle Edt ture Statisti
Command Ele Edt Vew Go Capl Analyze Statistics Help
A
menu SaEcee sl xR ResnFLIEEB QQUQH
fter ~ oo gex sy
No. Source | Destination Protocol o]
| 165.193
. . . 128,119, 245.
128.119.245.136 165.193.123,.218 HTTP GET /kurose-ross HTTP/1.1
165.193.123.218 128.119.245.136 HTTP HTTP/1l.1 302 Moved Temporarily
139 5.056789 128.119.245.136 165.193.123.218 HTTP GET /kurose-ross/ HTTR/1.1
146 5.079867 165.193.123.218 128.119.245,136 HTTP [Tcp out-of-order] HTTR/1.1 200 OK
Listing of 158 5.154773 128.119.245.136 165.193.123,218 HTTP GET /kurose-ross/banner.gif HTTP/1.:
159 5.154860 128.119.245.136 165.193.123.218 HTTP GET fkurose-ross/net3e.jpg HTTR/1.1
captured - 212 5.219770 165.193.123.218 128,119.245.136 HTTP HTTP/l.1 200 OK (JPEG IFIF ‘image)
packets 214 5.220261 128.119.245.136 165.193.123,.218 HTTP GET /kurose-ross/net2e.jpg HTTR/1.1
222 5.234456 128.119,.245.136 165.193.123.218 HTTP GET /kurose-ross/pearson.gif HTTP/1
259 5.310633 128.119.245.136 165.193.123.218 HTTP GET /favicon.ico HTTP/L.1
265 5.327525 165.193.123.218 128.119.245.136 HTTP HTTP/1.1 200 oK (image/x-icon)
S
L |« - — 3
ils of [|[@ Frame 121 (470 bytes on wire, 470 bytes captured)
Details o @ Ethernet II, Src: wistron_23:68:8a (00:16:d3:23:68:8a), Dst: Digitale_00:e8:0b (aa:00:04:00:e8:0b)
selected ® Internet Protocol, Src: 128.119.245.136 (128.110.245.136), Dst: 165.193.123.224 (165.193.123.224)
X Transmission Control Protocol, Src Port: ck: 1, Len: -'116
packet
header
< >
Packet AN T =
i e-ross H TTP/1.1. il
contents- n _ LHOST: w ww.awl.cC
hexadecimal om. .User -Agent: <
#Ma=s311a /€ 1t
and ASCII |F Control I{tcp), 20 bytes [P: 350 D: 13 M: 0 Drops: 0 4

Figure 1.29 ¢ A Wireshark screen shot

The basic tool for observing the messages exchanged between executing proto-
col entities is called a packet sniffer. As the name suggests, a packet sniffer pas-
sively copies (sniffs) messages being sent from and received by your computer; it
also displays the contents of the various protocol fields of these captured messages.
A screenshot of the Wireshark packet sniffer is shown in Figure 1.29. Wireshark is a
free packet sniffer that runs on Windows, Linux/Unix, and Mac computers.
Throughout the textbook, you will find Wireshark labs that allow you to explore a
number of the protocols studied in the chapter. In this first Wireshark lab, you’ll
obtain and install a copy of Wireshark, access a Web site, and capture and examine
the protocol messages being exchanged between your Web browser and the Web
server.

You can find full details about this first Wireshark lab (including instructions
about how to obtain and install Wireshark) at the Web site http://www.awl.com/
kurose-ross.

http://www.awl.com/kurose-ross
http://www.awl.com/kurose-ross

AN INTERVIEW WITH...

Leonard Kleinrock

leonard Kleinrock is a professor of computer science at the University
of California, Los Angeles. In 1969, his computer at UCLA became

the first node of the Internet. His creation of packetswitching princi-

ples in 1961 became the technology behind the Internet. He
received his B.E.E. from the City College of New York (CCNY) and
his masters and PhD in electrical engineering from MIT.

What made you decide to specialize in networking/Internet technology?

As a PhD student at MIT in 1959, I looked around and found that most of my classmates
were doing research in the area of information theory and coding theory. At MIT, there was
the great researcher, Claude Shannon, who had launched these fields and had solved most of
the important problems already. The research problems that were left were hard and of less-
er consequence. So I decided to launch out in a new area that no one else had yet conceived
of. Remember that at MIT I was surrounded by lots of computers, and it was clear to me
that soon these machines would need to communicate with each other. At the time, there
was no effective way for them to do so, so I decided to develop the technology that would
permit efficient and reliable data networks to be created.

What was your first job in the computer industry? What did it entail?

I went to the evening session at CCNY from 1951 to 1957 for my bachelor’s degree in
electrical engineering. During the day, I worked first as a technician and then as an engi-
neer at a small, industrial electronics firm called Photobell. While there, I introduced
digital technology to their product line. Essentially, we were using photoelectric devices
to detect the presence of certain items (boxes, people, etc.) and the use of a circuit
known then as a bistable multivibrator was just the kind of technology we needed to
bring digital processing into this field of detection. These circuits happen to be the build-
ing blocks for computers, and have come to be known as flip-flops or switches in today’s
vernacular.

What was going through your mind when you sent the first host-to-host message (from
UCLA to the Stanford Research Institute)?

Frankly, we had no idea of the importance of that event. We had not prepared a special mes-
sage of historic significance, as did so many inventors of the past (Samuel Morse with “What
hath God wrought.” or Alexander Graham Bell with “Watson, come here! I want you.” or
Neal Amstrong with “That’s one small step for a man, one giant leap for mankind.”) Those
guys were smart! They understood media and public relations. All we wanted to do was to
login to the SRI computer. So we typed the “L”, which was correctly received, we typed the

€9

“0” which was received, and then we typed the “g” which caused the SRI host computer to

82

crash! So, it turned out that our message was the shortest and perhaps the most prophetic
message ever, namely “Lo!” as in “Lo and behold!”

Earlier that year, I was quoted in a UCLA press release saying that once the network was
up and running, it would be possible to gain access to computer utilities from our homes and
offices as easily as we gain access to electricity and telephone connectivity. So my vision at
that time was that the Internet would be ubiquitous, always on, always available, anyone with
any device could connect from any location, and it would be invisible. However, I never
anticipated that my 99-year-old mother would use the Internet—and indeed she did!

What is your vision for the future of networking?

The easy part of the vision is to predict the infrastructure itself. I anticipate that we see con-
siderable deployment of nomadic computing, mobile devices, and smart spaces. Indeed, the
availability of lightweight, inexpensive, high-performance, portable computing, and commu-
nication devices (plus the ubiquity of the Internet) has enabled us to become nomads.
Nomadic computing refers to the technology that enables end users who travel from place to
place to gain access to Internet services in a transparent fashion, no matter where they travel
and no matter what device they carry or gain access to. The harder part of the vision is to
predict the applications and services, which have consistently surprised us in dramatic ways
(email, search technologies, the world-wide-web, blogs, social networks, user generation, and
sharing of music, photos, and videos, etc.). We are on the verge of a new class of surprising
and innovative mobile applications delivered to our hand-held devices.

The next step will enable us to move out from the netherworld of cyberspace to the
physical world of smart spaces. Our environments (desks, walls, vehicles, watches, belts, and
so on) will come alive with technology, through actuators, sensors, logic, processing, storage,
cameras, microphones, speakers, displays, and communication. This embedded technology
will allow our environment to provide the IP services we want. When I walk into a room, the
room will know I entered. I will be able to communicate with my environment naturally, as
in spoken English; my requests will generate replies that present Web pages to me from wall
displays, through my eyeglasses, as speech, holograms, and so forth.

Looking a bit further out, I see a networking future that includes the following addi-
tional key components. I see intelligent software agents deployed across the network
whose function it is to mine data, act on that data, observe trends, and carry out tasks
dynamically and adaptively. I see considerably more network traffic generated not so much
by humans, but by these embedded devices and these intelligent software agents. I see
large collections of self-organizing systems controlling this vast, fast network. I see huge
amounts of information flashing across this network instantaneously with this information
undergoing enormous processing and filtering. The Internet will essentially be a pervasive
global nervous system. I see all these things and more as we move headlong through the
twenty-first century.

83

What people have inspired you professionally?

By far, it was Claude Shannon from MIT, a brilliant researcher who had the ability to relate
his mathematical ideas to the physical world in highly intuitive ways. He was on my PhD
thesis committee.

Do you have any advice for students entering the networking/Internet field?

The Internet and all that it enables is a vast new frontier, full of amazing challenges. There
is room for great innovation. Don’t be constrained by today’s technology. Reach out and
imagine what could be and then make it happen.

|
|
|
(s

okt f AN LW :
e A RGN
ALY

Application
Layer

Network applications are the raisons d’étre of a computer network—if we couldn’t
conceive of any useful applications, there wouldn’t be any need to design network-
ing protocols to support them. Over the past 40 years, numerous ingenious and won-
derful network applications have been created. These applications include the
classic text-based applications that became popular in the 1970s and 1980s: text
e-mail, remote access to computers, file transfers, newsgroups, and text chat. They
include the killer application of the mid-1990s: the World Wide Web, encompassing
Web surfing, search, and electronic commerce. They also include the two killer
applications introduced at the end of the millennium—instant messaging with buddy
lists, and P2P file sharing. And they include many successful audio and video appli-
cations, including Internet telephony, video sharing and streaming, Internet radio,
and IP television (IPTV). Moreover, the increasing penetration of broadband resi-
dential access and the increasing ubiquity of wireless access are setting the stage for
more new and exciting applications in the future.

In this chapter we study the conceptual and implementation aspects of network
applications. We begin by defining key application-layer concepts, including network
services required by applications, clients and servers, processes, and transport-layer
interfaces. We examine several network applications in detail, including the Web,
e-mail, DNS, peer-to-peer (P2P) file distribution, and P2P Internet telephony. We
then cover network application development, over both TCP and UDP. In particular,

85

86

CHAPTER 2

APPLICATION LAYER

we study the socket API and walk through some simple client-server applications in
Java. We also provide several fun and interesting socket programming assignments
at the end of the chapter.

The application layer is a particularly good place to start our study of protocols.
It’s familiar ground. We’re acquainted with many of the applications that rely on the
protocols we’ll study. It will give us a good feel for what protocols are all about and
will introduce us to many of the same issues that we’ll see again when we study trans-
port, network, and link layer protocols.

2.1 Principles of Network Applications

Suppose you have an idea for a new network application. Perhaps this application
will be a great service to humanity, or will please your professor, or will bring you
great wealth, or will simply be fun to develop. Whatever the motivation may be, let’s
now examine how you transform the idea into a real-world network application.

At the core of network application development is writing programs that run on
different end systems and communicate with each other over the network. For
example, in the Web application there are two distinct programs that communicate
with each other: the browser program running in the user’s host (desktop, laptop,
PDA, cell phone, and so on); and the Web server program running in the Web server
host. As another example, in a P2P file-sharing system there is a program in each
host that participates in the file-sharing community. In this case, the programs in the
various hosts may be similar or identical.

Thus, when developing your new application, you need to write software that
will run on multiple end systems. This software could be written, for example, in C,
Java, or Python. Importantly, you do not need to write software that runs on network-
core devices, such as routers or link-layer switches. Even if you wanted to write
application software for these network-core devices, you wouldn’t be able to do so.
As we learned in Chapter 1, and as shown earlier in Figure 1.24, network-core
devices do not function at the application layer but instead function at lower layers—
specifically at the network layer and below. This basic design—namely, confining
application software to the end systems—as shown in Figure 2.1, has facilitated the
rapid development and deployment of a vast array of network applications.

2.1.1 Network Application Architectures

Before diving into software coding, you should have a broad architectural plan for
your application. Keep in mind that an application’s architecture is distinctly differ-
ent from the network architecture (e.g., the five-layer Internet architecture discussed
in Chapter 1). From the application developer’s perspective, the network architec-
ture is fixed and provides a specific set of services to applications. The application

2.1 = PRINCIPLES OF NETWORK APPLICATIONS

Application
Transport

Network
Link

Physical

National or
Mobile /\ﬁ‘ Global ISP
Network ><
S -
><
Local or
Regional ISP
@ m — -
—
>) x
>
Home Network
><

‘V(>x<

87

Application y >
Transport @ > ﬁ
Network —C l
Link = @ @ Application
- E] Transport
Physical = T :
= = l Network
Link
Company Network
Physical

Figure 2.1 ¢ Communication for a network application takes place

between end systems at the application layer.

88

CHAPTER 2

APPLICATION LAYER

architecture, on the other hand, is designed by the application developer and dic-
tates how the application is structured over the various end systems. In choosing the
application architecture, an application developer will likely draw on one of the two
predominant architectural paradigms used in modern network applications: the
client-server architecture or the peer-to-peer (P2P) architecture

In a client-server architecture, there is an always-on host, called the server,
which services requests from many other hosts, called clients. The client hosts can be
either sometimes-on or always-on. A classic example is the Web application
for which an always-on Web server services requests from browsers running on client
hosts. When a Web server receives a request for an object from a client host, it
responds by sending the requested object to the client host. Note that with the client-
server architecture, clients do not directly communicate with each other; for exam-
ple, in the Web application, two browsers do not directly communicate. Another
characteristic of the client-server architecture is that the server has a fixed, well-
known address, called an IP address (which we’ll discuss soon). Because the server
has a fixed, well-known address, and because the server is always on, a client can
always contact the server by sending a packet to the server’s address. Some of the
better-known applications with a client-server architecture include the Web, FTP, Tel-
net, and e-mail. The client-server architecture is shown in Figure 2.2(a).

Often in a client-server application, a single server host is incapable of keeping
up with all the requests from its clients. For example, a popular social-networking site
can quickly become overwhelmed if it has only one server handling all of its requests.
For this reason, a large cluster of hosts—sometimes referred to as a data center—is
often used to create a powerful virtual server in client-server architectures. Application
services that are based on the client-server architecture are often infrastructure inten-
sive, since they require the service providers to purchase, install, and maintain server
farms. Additionally, the service providers must pay recurring interconnection and band-
width costs for sending and receiving data to and from the Internet. Popular services
such as search engines (e.g., Google), Internet commerce (e.g., Amazon and e-Bay),
Web-based e-mail (e.g., Yahoo Mail), social networking (e.g., MySpace and Facebook),
and video sharing (e.g., YouTube) are infrastructure intensive and costly to provide.

In a P2P architecture, there is minimal (or no) reliance on always-on infrastruc-
ture servers. Instead the application exploits direct communication between pairs of
intermittently connected hosts, called peers. The peers are not owned by the service
provider, but are instead desktops and laptops controlled by users, with most of the
peers residing in homes, universities, and offices. Because the peers communicate
without passing through a dedicated server, the architecture is called peer-to-peer.
Many of today’s most popular and traffic-intensive applications are based on P2P
architectures. These applications include file distribution (e.g., BitTorrent), file
sharing (e.g., eMule and LimeWire), Internet telephony (e.g., Skype), and
IPTV (e.g., PPLive). The P2P architecture is illustrated in Figure 2.2 (b). We mention
that some applications have hybrid architectures, combining both client-server and
P2P elements. For example, for many instant messaging applications, servers are

2.1« PRINCIPLES OF NETWORK APPLICATIONS 89

a. Client-server architecture b. Peer-to-peer architecture
Figure 2.2 ¢ (a) Clientserver architecture; (b) P2P architecture.

used to track the IP addresses of users, but user-to-user messages are sent directly
between user hosts (without passing through intermediate servers).

One of the most compelling features of P2P architectures is their self-scalability.
For example, in a P2P file-sharing application, although each peer generates work-
load by requesting files, each peer also adds service capacity to the system by distrib-
uting files to other peers. P2P architectures are also cost effective, since they
normally don’t require significant server infrastructure and server bandwidth. In
order to reduce costs, service providers (MSN, Yahoo, and so on) are increasingly
interested in using P2P architectures for their applications [Chuang 2007]. However,
future P2P applications face three major challenges:

1. ISP Friendly. Most residential ISPs (including DSL and cable ISPs) have been
dimensioned for “asymmetrical” bandwidth usage, that is, for much more
downstream than upstream traffic. But P2P video streaming and file distribu-
tion applications shift upstream traffic from servers to residential ISPs, thereby
putting significant stress on the ISPs. Future P2P applications need to be
designed so that they are friendly to ISPs [Xie 2008].

90

CHAPTER 2

APPLICATION LAYER

2. Security. Because of their highly distributed and open nature, P2P applications
can be a challenge to secure [Doucer 2002; Yu 2006; Liang 2006; Naoumov
2006; Dhungel 2008].

3. Incentives. The success of future P2P applications also depends on convincing
users to volunteer bandwidth, storage, and computation resources to the appli-
cations, which is the challenge of incentive design [Feldman 2005; Piatek
2008; Aperjis 2008].

2.1.2 Processes Communicating

Before building your network application, you also need a basic understanding of
how the programs, running in multiple end systems, communicate with each other. In
the jargon of operating systems, it is not actually programs but processes that com-
municate. A process can be thought of as a program that is running within an end sys-
tem. When processes are running on the same end system, they can communicate
with each other with interprocess communication, using rules that are governed by
the end system’s operating system. But in this book we are not particularly interested
in how processes in the same host communicate, but instead in how processes run-
ning on different hosts (with potentially different operating systems) communicate.

Processes on two different end systems communicate with each other by exchang-
ing messages across the computer network. A sending process creates and sends mes-
sages into the network; a receiving process receives these messages and possibly
responds by sending messages back. Figure 2.1 illustrates that processes communicate
with each other by using the application layer of the five-layer protocol stack.

Client and Server Processes

A network application consists of pairs of processes that send messages to each other
over a network. For example, in the Web application a client browser process
exchanges messages with a Web server process. In a P2P file-sharing system, a file is
transferred from a process in one peer to a process in another peer. For each pair of
communicating processes, we typically label one of the two processes as the client and
the other process as the server. With the Web, a browser is a client process and a Web
server is a server process. With P2P file sharing, the peer that is downloading the file is
labeled as the client, and the peer that is uploading the file is labeled as the server.

You may have observed that in some applications, such as in P2P file sharing, a
process can be both a client and a server. Indeed, a process in a P2P file-sharing system
can both upload and download files. Nevertheless, in the context of any given commu-
nication session between a pair of processes, we can still label one process as the client
and the other process as the server. We define the client and server processes as follows:

In the context of a communication session between a pair of processes, the
process that initiates the communication (that is, initially contacts the other
process at the beginning of the session) is labeled as the client. The process
that waits to be contacted to begin the session is the server.

2.1« PRINCIPLES OF NETWORK APPLICATIONS

In the Web, a browser process initializes contact with a Web server process;
hence the browser process is the client and the Web server process is the server. In
P2P file sharing, when Peer A asks Peer B to send a specific file, Peer A is the client
and Peer B is the server in the context of this specific communication session. When
there’s no confusion, we’ll sometimes also use the terminology “client side and
server side of an application.” At the end of this chapter, we’ll step through simple
code for both the client and server sides of network applications.

The Interface Between the Process and the Computer Network

As noted above, most applications consist of pairs of communicating processes, with
the two processes in each pair sending messages to each other. Any message sent from
one process to another must go through the underlying network. A process sends
messages into, and receives messages from, the network through a software interface
called a socket. Let’s consider an analogy to help us understand processes and sock-
ets. A process is analogous to a house and its socket is analogous to its door. When a
process wants to send a message to another process on another host, it shoves the mes-
sage out its door (socket). This sending process assumes that there is a transportation
infrastructure on the other side of its door that will transport the message to the door
of the destination process. Once the message arrives at the destination host, the mes-
sage passes through the receiving process’s door (socket), and the receiving process
then acts on the message.

Figure 2.3 illustrates socket communication between two processes that com-
municate over the Internet. (Figure 2.3 assumes that the underlying transport proto-
col used by the processes is the Internet’s TCP protocol.) As shown in this figure, a

Host or Host or
server server
[q‘
= =
Controlled
by application Process Process
developer 4 4
Socket Socket
Controlle(?l TCP with TCP with
by operating buffers, < > buffers,
system variables (ErmED variables

Figure 2.3 ¢ Application processes, sockets, and underlying transport protocol

Controlled

by application

developer

Controlled
by operating
system

91

92

CHAPTER 2

APPLICATION LAYER

socket is the interface between the application layer and the transport layer within a
host. It is also referred to as the Application Programming Interface (API)
between the application and the network, since the socket is the programming inter-
face with which network applications are built. The application developer has con-
trol of everything on the application-layer side of the socket but has little control of
the transport-layer side of the socket. The only control that the application devel-
oper has on the transport-layer side is (1) the choice of transport protocol and (2)
perhaps the ability to fix a few transport-layer parameters such as maximum buffer
and maximum segment sizes (to be covered in Chapter 3). Once the application
developer chooses a transport protocol (if a choice is available), the application is
built using the transport-layer services provided by that protocol. We’ll explore
sockets in some detail in Sections 2.7 and 2.8.

2.1.3 Transport Services Available to Applications

Recall that a socket is the interface between the application process and the
transport-layer protocol. The application at the sending side pushes messages
through the socket. At the other side of the socket, the transport-layer protocol has
the responsibility of getting the messages to the “door” of the receiving socket.

Many networks, including the Internet, provide more than one transport-layer
protocol. When you develop an application, you must choose one of the available
transport-layer protocols. How do you make this choice? Most likely, you would
study the services that are provided by the available transport-layer protocols, and
then pick the protocol with the services that best match the needs of your applica-
tion. The situation is similar to choosing either train or airplane transport for travel
between two cities. You have to choose one or the other, and each transportation
mode offers different services. (For example, the train offers downtown pickup and
drop-off, whereas the plane offers shorter travel time.)

What are the services that a transport-layer protocol can offer to applications
invoking it? We can broadly classify the possible services along four dimensions:
reliable data transfer, throughput, timing, and security.

Reliable Data Transfer

As discussed in Chapter 1, packets can get lost within a computer network. For exam-
ple, a packet can overflow a buffer in a router, or it could get discarded by a host or
router after having some of its bits corrupted. For many applications—such as elec-
tronic mail, file transfer, remote host access, Web document transfers, and financial
applications—data loss can have devastating consequences (in the latter case, for either
the bank or the customer!). Thus, to support these applications, something has to be
done to guarantee that the data sent by one end of the application is delivered correctly
and completely to the other end of the application. If a protocol provides such a guaran-
teed data delivery service, it is said to provide reliable data transfer. One important

2.1« PRINCIPLES OF NETWORK APPLICATIONS

service that a transport-layer protocol can potentially provide to an application is
process-to-process reliable data transfer. When a transport protocol provides this serv-
ice, the sending process can just pass its data into the socket and know with complete
confidence that the data will arrive without errors at the receiving process.

When a transport-layer protocol doesn’t provide reliable data transfer, data sent
by the sending process may never arrive at the receiving process. This may be
acceptable for loss-tolerant applications, most notably multimedia applications
such as real-time audio/video or stored audio/video that can tolerate some amount
of data loss. In these multimedia applications, lost data might result in a small glitch
in the played-out audio/video—not a crucial impairment.

Throughput

In Chapter 1 we introduced the concept of available throughput, which, in the con-
text of a communication session between two processes along a network path is the
rate at which the sending process can deliver bits to the receiving process. Because
other sessions will be sharing the bandwidth along the network path, and because
these other sessions will be coming and going, the available throughput can fluctu-
ate with time. These observations lead to another natural service that a transport-
layer protocol could provide, namely, guaranteed available throughput at some
specified rate. With such a service, the application could request a guaranteed
throughput of r bits/sec, and the transport protocol would then ensure that the avail-
able throughput is always at least bits/sec. Such a guaranteed throughput service
would appeal to many applications. For example, if an Internet telephony applica-
tion encodes voice at 32 kbps, it needs to send data into the network and have data
delivered to the receiving application at this rate. If the transport protocol cannot
provide this throughput, the application would need to encode at a lower rate (and
receive enough throughput to sustain this lower coding rate) or it should give up,
since receiving half of the needed throughput is of little or no use to this Internet
telephony application. Applications that have throughput requirements are said to
be bandwidth-sensitive applications. Many current multimedia applications are
bandwidth sensitive, although some multimedia applications may use adaptive cod-
ing techniques to encode at a rate that matches the currently available throughput.

While bandwidth-sensitive applications have specific throughput requirements,
elastic applications can make use of as much, or as little, throughput as happens to
be available. Electronic mail, file transfer, and Web transfers are all elastic applica-
tions. Of course, the more throughput, the better. There’s an adage that says that one
cannot be too rich, too thin, or have too much throughput!

Timing
A transport-layer protocol can also provide timing guarantees. As with throughput
guarantees, timing guarantees can come in many shapes and forms. An example

93

94

CHAPTER 2

APPLICATION LAYER

guarantee might be that every bit that the sender pumps into the socket arrives at the
receiver’s socket no more than 100 msec later. Such a service would be appealing to
interactive real-time applications, such as Internet telephony, virtual environments,
teleconferencing, and multiplayer games, all of which require tight timing constraints
on data delivery in order to be effective. (See Chapter 7, [Gauthier 1999; Ramjee
1994].) Long delays in Internet telephony, for example, tend to result in unnatural
pauses in the conversation; in a multiplayer game or virtual interactive environment,
a long delay between taking an action and seeing the response from the environment
(for example, from another player at the end of an end-to-end connection) makes the
application feel less realistic. For non-real-time applications, lower delay is always
preferable to higher delay, but no tight constraint is placed on the end-to-end delays.

Security

Finally, a transport protocol can provide an application with one or more security
services. For example, in the sending host, a transport protocol can encrypt all data
transmitted by the sending process, and in the receiving host, the transport-layer pro-
tocol can decrypt the data before delivering the data to the receiving process. Such a
service would provide confidentiality between the two processes, even if the data is
somehow observed between sending and receiving processes. A transport protocol
can also provide other security services in addition to confidentiality, including data
integrity and end-point authentication, topics that we’ll cover in detail in Chapter 8.

2.1.4 Transport Services Provided by the Internet

Up until this point, we have been considering transport services that a computer net-
work could provide in general. Let’s now get more specific and examine the type of
application support provided by the Internet. The Internet (and, more generally,
TCP/IP networks) makes two transport protocols available to applications, UDP and
TCP. When you (as an application developer) create a new network application for
the Internet, one of the first decisions you have to make is whether to use UDP or
TCP. Each of these protocols offers a different set of services to the invoking appli-
cations. Figure 2.4 shows the service requirements for some selected applications.

TCP Services

The TCP service model includes a connection-oriented service and a reliable data
transfer service. When an application invokes TCP as its transport protocol, the
application receives both of these services from TCP.

* Connection-oriented service. TCP has the client and server exchange transport-
layer control information with each other before the application-level messages
begin to flow. This so-called handshaking procedure alerts the client and server,
allowing them to prepare for an onslaught of packets. After the handshaking phase,

PRINCIPLES OF NETWORK APPLICATIONS

2.1 o
Application Data Loss Bandwidth Time-Sensitive
File fransfer No loss Elastic No
E-mail No loss Elastic No
Web documents No loss Flastic (few kbps) No
Internet telephony / Loss-tolerant Audio: few kbps—1Mbps Yes: 100s of msec
Video conferencing Video: 10 kbps—5 Mbps
Stored qudio/video Losstolerant Same as above Yes: few seconds
Interactive gomes Loss-tolerant Few kbps—10 kbps Yes: 100s of msec
Instant messaging No loss Elastic Yes and no

Figure 2.4 ¢ Requirements of selected network applications

a TCP connection is said to exist between the sockets of the two processes. The
connection is a full-duplex connection in that the two processes can send messages
to each other over the connection at the same time. When the application finishes
sending messages, it must tear down the connection. The service is referred to as a
“connection-oriented” service rather than a “connection” service because the two
processes are connected in a very loose manner. In Chapter 3 we’ll discuss connec-
tion-oriented service in detail and examine how it is implemented.

* Reliable data transfer service. The communicating processes can rely on TCP to
deliver all data sent without error and in the proper order. When one side of the
application passes a stream of bytes into a socket, it can count on TCP to deliver the
same stream of bytes to the receiving socket, with no missing or duplicate bytes.

TCP also includes a congestion-control mechanism, a service for the general
welfare of the Internet rather than for the direct benefit of the communicating
processes. The TCP congestion-control mechanism throttles a sending process (client
or server) when the network is congested between sender and receiver. As we will
see in Chapter 3, TCP congestion control also attempts to limit each TCP connection
to its fair share of network bandwidth. The throttling of the transmission rate can
have a very harmful effect on real-time audio and video applications that have mini-
mum throughput requirements. Moreover, real-time applications are loss-tolerant and
do not need a fully reliable transport service. For these reasons, developers of real-
time applications often choose to run their applications over UDP rather than TCP.

UDP Services

UDP is a no-frills, lightweight transport protocol, providing minimal services. UDP
is connectionless, so there is no handshaking before the two processes start to

95

96

CHAPTER 2

APPLICATION LAYER

FOCUS ON SECURITY

SECURING TCP

Neither TCP nor UDP provide any encryption—the data that the sending process
passes info its socket is the same data that travels over the network to the destination
process. So, for example, if the sending process sends a password in cleartext (i.e.,
unencrypted) into its socket, the cleartext password will travel over all the links
between sender and receiver, potentially getting sniffed and discovered at any of
the intervening links. Because privacy and other security issues have become critical
for many applications, the Internet community has developed an enhancement for TCP,
called Secure Sockets Layer (SSL). TCP-enhanced-with-SSL not only does every-
thing that traditional TCP does but also provides critical process-to-process security
services, including encryption, data integrity, and end-point authentication. We
emphasize that SSL is not a third Internet transport protocol, on the same level as
TCP and UDP, but instead is an enhancement of TCP, with the enhancements being
implemented in the application layer. In particular, if an application wants to use the
services of SSL, it needs to include SSL code (existing, highly optimized libraries and
classes) in both the client and server sides of the application. SSL has its own socket
API that is similar to the traditional TCP socket APl. When an application uses SSL, the
sending process passes cleartext data to the SSL socket; SSL in the sending host then
encrypts the data and passes the encrypted data to the TCP socket. The encrypted
data travels over the Internet to the TCP socket in the receiving process. The receiving
socket passes the encrypted data to SSL, which decrypts the data. Finally, SSL passes
the cleartext data through its SSL socket to the receiving process. We'll cover SSL in
some detail in Chapter 8.

communicate. UDP provides an unreliable data transfer service—that is, when a process
sends a message into a UDP socket, UDP provides no guarantee that the message
will ever reach the receiving process. Furthermore, messages that do arrive at the
receiving process may arrive out of order.

UDP does not include a congestion-control mechanism, so the sending side of
UDP can pump data into the layer below (the network layer) at any rate it pleases.
(Note, however, that the actual end-to-end throughput may be less than this rate due
to the limited bandwidth of intervening links or due to congestion). Because real-
time applications can often tolerate some loss but require a minimal rate to be effec-
tive, developers of real-time applications sometimes choose to run their applications
over UDP, thereby circumventing TCP’s congestion-control mechanism and packet
overheads. On the other hand, because many firewalls are configured to block (most
types of) UDP traffic, designers have increasingly chosen to run multimedia and
real-time applications over TCP [Sripanidkulchai 2004].

2.1« PRINCIPLES OF NETWORK APPLICATIONS

Services Not Provided by Internet Transport Protocols

We have organized possible transport protocol services along four dimensions:
reliable data transfer, throughput, timing, and security. Which of these services are
provided by TCP and UDP? We have already noted that TCP provides reliable end-
to-end data transfer. And we also know that TCP can be easily enhanced at the appli-
cation layer with SSL to provide security services. But in our brief description of
TCP and UDP, conspicuously missing was any mention of throughput or timing
guarantees—services not provided by today’s Internet transport protocols. Does
this mean that time-sensitive applications such as Internet telephony cannot run
in today’s Internet? The answer is clearly no—the Internet has been hosting time-
sensitive applications for many years. These applications often work fairly well
because they have been designed to cope, to the greatest extent possible, with this
lack of guarantee. We’ll investigate several of these design tricks in Chapter 7. Nev-
ertheless, clever design has its limitations when delay is excessive, as is often the
case in the public Internet. In summary, today’s Internet can often provide satisfac-
tory service to time-sensitive applications, but it cannot provide any timing or band-
width guarantees.

Figure 2.5 indicates the transport protocols used by some popular Internet
applications. We see that e-mail, remote terminal access, the Web, and file transfer
all use TCP. These applications have chosen TCP primarily because TCP provides a
reliable data transfer service, guaranteeing that all data will eventually get to its des-
tination. We also see that Internet telephony typically runs over UDP. Each side of
an Internet phone application needs to send data across the network at some mini-
mum rate (see real-time audio in Figure 2.4); this is more likely to be possible with
UDP than with TCP. Also, Internet phone applications are loss-tolerant, so they do
not need the reliable data transfer service provided by TCP.

Application Application-Layer Protocol Underlying Transport Protocol
Electronic mail SMTP [RFC 5321] TCP

Remote terminal access Telnet [RFC 854] TCP

Web HTTP [RFC 2616] TCP

File transfer FTP [RFC 959] 1CP

Streaming multimedia HTTP (e.g., YouTube), RTP TCP or UDP

Internet telephony SIP. RTP, or proprietary (e.g., Skype) Typically UDP

Figure 2.5 ¢ Popular Internet applications, their application-layer
protocols, and their underlying transport protocols

97

98

CHAPTER 2

APPLICATION LAYER

Addressing Processes

Our discussion above has focussed on the transport services between two communi-
cation processes. But how does a process indicate which process it wants to
communicate with using these services? How does a process running on a host in
Amberst, Massachusetts USA specify that it wants to communicate with a particular
process running on a host in Bangkok, Thailand? To identify the receiving process,
two pieces of information need to be specified: (1) the name or address of the host
and (2) an identifier that specifies the receiving process in the destination host.

In the Internet, the host is identified by its IP address. We’ll discuss IP
addresses in great detail in Chapter 4. For now, all we need to know is that an IP
address is a 32-bit quantity that we can think of as uniquely identifying the host.
(However, as we will see in Chapter 4, the widespread deployment of Network
Address Translators (NATs) means that, in practice, a 32-bit IP address alone does
not uniquely address a host.)

In addition to knowing the address of the host to which a message is destined,
the sending host must also identify the receiving process running in the host. This
information is needed because in general a host could be running many network
applications. A destination port number serves this purpose. Popular applications
have been assigned specific port numbers. For example, a Web server is identified
by port number 80. A mail server process (using the SMTP protocol) is identified by
port number 25. A list of well-known port numbers for all Internet standard proto-
cols can be found at http://www.iana.org. When a developer creates a new network
application, the application must be assigned a new port number. We’ll examine port
numbers in detail in Chapter 3.

2.1.5 Application-Layer Protocols

We have just learned that network processes communicate with each other by send-
ing messages into sockets. But how are these messages structured? What are the
meanings of the various fields in the messages? When do the processes send the
messages? These questions bring us into the realm of application-layer protocols.
An application-layer protocol defines how an application’s processes, running on
different end systems, pass messages to each other. In particular, an application-
layer protocol defines:

* The types of messages exchanged, for example, request messages and response
messages

* The syntax of the various message types, such as the fields in the message and
how the fields are delineated

* The semantics of the fields, that is, the meaning of the information in the fields

* Rules for determining when and how a process sends messages and responds to
messages

http://www.iana.org

2.1« PRINCIPLES OF NETWORK APPLICATIONS

Some application-layer protocols are specified in RFCs and are therefore in the
public domain. For example, the Web’s application-layer protocol, HTTP (the
HyperText Transfer Protocol [RFC 2616]), is available as an RFC. If a browser
developer follows the rules of the HTTP RFC, the browser will be able to retrieve
Web pages from any Web server that has also followed the rules of the HTTP RFC.
Many other application-layer protocols are proprietary and intentionally not avail-
able in the public domain. For example, many existing P2P file-sharing systems use
proprietary application-layer protocols.

It is important to distinguish between network applications and application-layer
protocols. An application-layer protocol is only one piece of a network application.
Let’s look at a couple of examples. The Web is a client-server application that allows
users to obtain documents from Web servers on demand. The Web application con-
sists of many components, including a standard for document formats (that is,
HTML), Web browsers (for example, Firefox and Microsoft Internet Explorer), Web
servers (for example, Apache and Microsoft servers), and an application-layer proto-
col. The Web’s application-layer protocol, HTTP, defines the format and sequence of
the messages that are passed between browser and Web server. Thus, HTTP is only
one piece (albeit, an important piece) of the Web application. As another example, an
Internet e-mail application also has many components, including mail servers that
house user mailboxes; mail readers that allow users to read and create messages; a
standard for defining the structure of an e-mail message; and application-layer proto-
cols that define how messages are passed between servers, how messages are passed
between servers and mail readers, and how the contents of certain parts of the mail
message (for example, a mail message header) are to be interpreted. The principal
application-layer protocol for electronic mail is SMTP (Simple Mail Transfer Proto-
col) [RFC 5321]. Thus, e-mail’s principal application-layer protocol, SMTP, is only
one piece (albeit, an important piece) of the e-mail application.

2.1.6 Network Applications Covered in This Book

New public domain and proprietary Internet applications are being developed every
day. Rather than covering a large number of Internet applications in an encyclope-
dic manner, we have chosen to focus on a small number of applications that are both
pervasive and important. In this chapter we discuss five important applications: the
Web, file transfer, electronic mail, directory service, and P2P applications. We first
discuss the Web, not only because it is an enormously popular application, but also
because its application-layer protocol, HTTP, is straightforward and easy to under-
stand. After covering the Web, we briefly examine FTP, because it provides a nice
contrast to HTTP. We then discuss electronic mail, the Internet’s first killer applica-
tion. E-mail is more complex than the Web in the sense that it makes use of not one
but several application-layer protocols. After e-mail, we cover DNS, which provides
a directory service for the Internet. Most users do not interact with DNS directly;
instead, users invoke DNS indirectly through other applications (including the Web,

99

100

CHAPTER 2

e APPLICATION LAYER

file transfer, and electronic mail). DNS illustrates nicely how a piece of core net-
work functionality (network-name to network-address translation) can be imple-
mented at the application layer in the Internet. Finally, we discuss several P2P
applications, including file distribution, distributed databases, and IP telephony.

2.2 The Web and HTTP

Until the early 1990s the Internet was used primarily by researchers, academics, and
university students to log in to remote hosts, to transfer files from local hosts to remote
hosts and vice versa, to receive and send news, and to receive and send electronic
mail. Although these applications were (and continue to be) extremely useful, the
Internet was essentially unknown outside of the academic and research communities.
Then, in the early 1990s, a major new application arrived on the scene—the World
Wide Web [Berners-Lee 1994]. The Web was the first Internet application that caught
the general public’s eye. It dramatically changed, and continues to change, how peo-
ple interact inside and outside their work environments. It elevated the Internet from
just one of many data networks to essentially the one and only data network.

Perhaps what appeals the most to users is that the Web operates on demand.
Users receive what they want, when they want it. This is unlike broadcast radio and
television, which force users to tune in when the content provider makes the content
available. In addition to being available on demand, the Web has many other won-
derful features that people love and cherish. It is enormously easy for any individual
to make information available over the Web—everyone can become a publisher at
extremely low cost. Hyperlinks and search engines help us navigate through an
ocean of Web sites. Graphics stimulate our senses. Forms, Java applets, and many
other devices enable us to interact with pages and sites. And more and more, the
Web provides a menu interface to vast quantities of audio and video material stored
in the Internet—multimedia that can be accessed on demand.

2.2.1 Overview of HTTP

The HyperText Transfer Protocol (HTTP), the Web’s application-layer protocol,
is at the heart of the Web. It is defined in [RFC 1945] and [RFC 2616]. HTTP is
implemented in two programs: a client program and a server program. The client
program and server program, executing on different end systems, talk to each other
by exchanging HTTP messages. HTTP defines the structure of these messages and
how the client and server exchange the messages. Before explaining HTTP in detail,
we should review some Web terminology.

A Web page (also called a document) consists of objects. An object is simply a
file—such as an HTML file, a JPEG image, a Java applet, or a video clip—that is
addressable by a single URL. Most Web pages consist of a base HTML file and
several referenced objects. For example, if a Web page contains HTML text and five

2.2« THE WEB AND HTTP 101

JPEG images, then the Web page has six objects: the base HTML file plus the five
images. The base HTML file references the other objects in the page with the
objects’ URLs. Each URL has two components: the hostname of the server that
houses the object and the object’s path name. For example, the URL

http://www.someSchool.edu/someDepartment/picture.gif

has www.someSchool.edu for a hostname and /someDepartment/
picture.gif for a path name. Because Web browsers (such as Internet Explorer
and Firefox) implement the client side of HTTP, in the context of the Web, we will use
the words browser and client interchangeably. Web servers, which implement the
server side of HTTP, house Web objects, each addressable by a URL. Popular Web
servers include Apache and Microsoft Internet Information Server.

HTTP defines how Web clients request Web pages from Web servers and how
servers transfer Web pages to clients. We discuss the interaction between client and
server in detail later, but the general idea is illustrated in Figure 2.6. When a user
requests a Web page (for example, clicks on a hyperlink), the browser sends HTTP
request messages for the objects in the page to the server. The server receives the
requests and responds with HTTP response messages that contain the objects.

HTTP uses TCP as its underlying transport protocol (rather than running on top
of UDP). The HTTP client first initiates a TCP connection with the server. Once the
connection is established, the browser and the server processes access TCP through
their socket interfaces. As described in Section 2.1, on the client side the socket inter-
face is the door between the client process and the TCP connection; on the server side
it is the door between the server process and the TCP connection. The client sends
HTTP request messages into its socket interface and receives HTTP response

Server running
Apache Web server

S
= —
PC running Linux running
Internet Explorer Firefox

Figure 2.6 ¢ HTTP requestresponse behavior

http://www.someSchool.edu/someDepartment/picture.gif
www.someSchool.edu

102

CHAPTER 2

e APPLICATION LAYER

messages from its socket interface. Similarly, the HTTP server receives request mes-
sages from its socket interface and sends response messages into its socket interface.
Once the client sends a message into its socket interface, the message is out of the
client’s hands and is “in the hands” of TCP. Recall from Section 2.1 that TCP pro-
vides a reliable data transfer service to HTTP. This implies that each HTTP request
message sent by a client process eventually arrives intact at the server; similarly, each
HTTP response message sent by the server process eventually arrives intact at the
client. Here we see one of the great advantages of a layered architecture—HTTP need
not worry about lost data or the details of how TCP recovers from loss or reordering
of data within the network. That is the job of TCP and the protocols in the lower lay-
ers of the protocol stack.

It is important to note that the server sends requested files to clients without stor-
ing any state information about the client. If a particular client asks for the same object
twice in a period of a few seconds, the server does not respond by saying that it just
served the object to the client; instead, the server resends the object, as it has com-
pletely forgotten what it did earlier. Because an HTTP server maintains no informa-
tion about the clients, HTTP is said to be a stateless protocol. We also remark that the
Web uses the client-server application architecture, as described in Section 2.1. A Web
server is always on, with a fixed IP address, and it services requests from potentially
millions of different browsers.

2.2.2 Non-Persistent and Persistent Connections

In many Internet applications, the client and server communicate for an extended
period of time, with the client making a series of requests and the server responding
to each of the requests. Depending on the application and on how the application is
being used, the series of requests may be made back-to-back, periodically at regular
intervals, or intermittently. When this client-server interaction is taking place over
TCP, the application developer needs to make an important decision - should each
request/response pair be sent over a separate TCP connection, or should all of the
requests and their corresponding responses be sent over the same TCP connection?
In the former approach, the application is said to use non-persistent connections;
and in the latter approach, persistent connections. To gain a deep understanding of
this design issue, let’s examine the advantages and disadvantages of persistent con-
nections in the context of a specific application, namely, HTTP, which can use both
non-persistent connections and persistent connections. Although HTTP uses persist-
ent connections in its default mode, HTTP clients and servers can be configured to
use non-persistent connections instead.

HTTP with Non-Persistent Connections

Let’s walk through the steps of transferring a Web page from server to client for the
case of non-persistent connections. Let’s suppose the page consists of a base HTML

2.2« THE WEB AND HTTP

file and 10 JPEG images, and that all 11 of these objects reside on the same server.
Further suppose the URL for the base HTML file is

http://www.someSchool.edu/someDepartment/home.index
Here is what happens:

1. The HTTP client process initiates a TCP connection to the server
www . someSchool.edu on port number 80, which is the default port num-
ber for HTTP. Associated with the TCP connection, there will be a socket at the
client and a socket at the server.

2. The HTTP client sends an HTTP request message to the server via its socket. The
request message includes the path name /someDepartment/home. index.
(We will discuss HTTP messages in some detail below.)

3. The HTTP server process receives the request message via its socket, retrieves
the object /someDepartment/home.index from its storage (RAM or
disk), encapsulates the object in an HTTP response message, and sends the
response message to the client via its socket.

4. The HTTP server process tells TCP to close the TCP connection. (But TCP
doesn’t actually terminate the connection until it knows for sure that the client
has received the response message intact.)

5. The HTTP client receives the response message. The TCP connection termi-
nates. The message indicates that the encapsulated object is an HTML file. The
client extracts the file from the response message, examines the HTML file,
and finds references to the 10 JPEG objects.

6. The first four steps are then repeated for each of the referenced JPEG objects.

As the browser receives the Web page, it displays the page to the user. Two differ-
ent browsers may interpret (that is, display to the user) a Web page in somewhat differ-
ent ways. HTTP has nothing to do with how a Web page is interpreted by a client. The
HTTP specifications ([RFC 1945] and [RFC 2616]) define only the communication
protocol between the client HTTP program and the server HTTP program.

The steps above illustrate the use of non-persistent connections, where each TCP
connection is closed after the server sends the object—the connection does not persist
for other objects. Note that each TCP connection transports exactly one request mes-
sage and one response message. Thus, in this example, when a user requests the Web
page, 11 TCP connections are generated.

In the steps described above, we were intentionally vague about whether the
client obtains the 10 JPEGs over 10 serial TCP connections, or whether some of the
JPEGs are obtained over parallel TCP connections. Indeed, users can configure
modern browsers to control the degree of parallelism. In their default modes, most
browsers open 5 to 10 parallel TCP connections, and each of these connections han-
dles one request-response transaction. If the user prefers, the maximum number of

103

http://www.someSchool.edu/someDepartment/home.index
www.someSchool.edu

104

CHAPTER 2

e APPLICATION LAYER

parallel connections can be set to one, in which case the 10 connections are estab-
lished serially. As we’ll see in the next chapter, the use of parallel connections short-
ens the response time.

Before continuing, let’s do a back-of-the-envelope calculation to estimate the
amount of time that elapses from when a client requests the base HTML file until
the entire file is received by the client. To this end, we define the round-trip time
(RTT), which is the time it takes for a small packet to travel from client to server
and then back to the client. The RTT includes packet-propagation delays, packet-
queuing delays in intermediate routers and switches, and packet-processing
delays. (These delays were discussed in Section 1.4.) Now consider what happens
when a user clicks on a hyperlink. As shown in Figure 2.7, this causes the browser
to initiate a TCP connection between the browser and the Web server; this
involves a “three-way handshake”—the client sends a small TCP segment to the
server, the server acknowledges and responds with a small TCP segment, and,
finally, the client acknowledges back to the server. The first two parts of the three-
way handshake take one RTT. After completing the first two parts of the hand-
shake, the client sends the HTTP request message combined with the third part of

\

™

Initiate TCP —

connection ———— \
- /
Request file ———= \
RTT
}Time to transmit file
Entire file received{

Time Time
at client at server

Figure 2.7 ¢ Back-ofthe-envelope calculation for the time needed to
request and receive an HTML file

2.2+ THE WEB AND HTTP

the three-way handshake (the acknowledgment) into the TCP connection. Once
the request message arrives at the server, the server sends the HTML file into the
TCP connection. This HTTP request/response eats up another RTT. Thus, roughly,
the total response time is two RTTs plus the transmission time at the server of the
HTML file.

HTTP with Persistent Connections

Non-persistent connections have some shortcomings. First, a brand-new connec-
tion must be established and maintained for each requested object. For each of
these connections, TCP buffers must be allocated and TCP variables must be kept
in both the client and server. This can place a significant burden on the Web server,
which may be serving requests from hundreds of different clients simultaneously.
Second, as we just described, each object suffers a delivery delay of two RTTs—
one RTT to establish the TCP connection and one RTT to request and receive an
object.

With persistent connections, the server leaves the TCP connection open after
sending a response. Subsequent requests and responses between the same client and
server can be sent over the same connection. In particular, an entire Web page (in
the example above, the base HTML file and the 10 images) can be sent over a single
persistent TCP connection. Moreover, multiple Web pages residing on the same
server can be sent from the server to the same client over a single persistent TCP
connection. These requests for objects can be made back-to-back, without waiting
for replies to pending requests (pipelining). Typically, the HTTP server closes a con-
nection when it isn’t used for a certain time (a configurable timeout interval). When
the server receives the back-to-back requests, it sends the objects back-to-back. The
default mode of HTTP uses persistent connections with pipelining. We’ll quantita-
tively compare the performance of non-persistent and persistent connections in the
homework problems of Chapters 2 and 3. You are also encouraged to see [Heide-
mann 1997; Nielsen 1997].

2.2.3 HTTP Message Format

The HTTP specifications [RFC 2616]) include the definitions of the HTTP message
formats. There are two types of HTTP messages, request messages and response
messages, both of which are discussed below.

HTTP Request Message
Below we provide a typical HTTP request message:

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu

105

www.someschool.edu

106

CHAPTER 2

e APPLICATION LAYER

Connection: close
User-agent: Mozilla/4.0
Accept-language: fr

We can learn a lot by taking a close look at this simple request message. First of
all, we see that the message is written in ordinary ASCII text, so that your ordinary
computer-literate human being can read it. Second, we see that the message consists
of five lines, each followed by a carriage return and a line feed. The last line is fol-
lowed by an additional carriage return and line feed. Although this particular request
message has five lines, a request message can have many more lines or as few as
one line. The first line of an HTTP request message is called the request line; the
subsequent lines are called the header lines. The request line has three fields: the
method field, the URL field, and the HTTP version field. The method field can take
on several different values, including GET, POST, HEAD, PUT, and DELETE.
The great majority of HTTP request messages use the GET method. The GET
method is used when the browser requests an object, with the requested object iden-
tified in the URL field. In this example, the browser is requesting the object
/somedir/page.html. The version is self-explanatory; in this example, the
browser implements version HTTP/1.1.

Now let’s look at the header lines in the example. The header line Host :
www . someschool.edu specifies the host on which the object resides. You might
think that this header line is unnecessary, as there is already a TCP connection in
place to the host. But, as we’ll see in Section 2.2.5, the information provided by the
host header line is required by Web proxy caches. By including the Connection:
close header line, the browser is telling the server that it doesn’t want to bother
with persistent connections; it wants the server to close the connection after sending
the requested object. The User-agent : header line specifies the user agent, that
is, the browser type that is making the request to the server. Here the user agent is
Mozilla/4.0, a Netscape browser. This header line is useful because the server can
actually send different versions of the same object to different types of user agents.
(Each of the versions is addressed by the same URL.) Finally, the Accept-
language: header indicates that the user prefers to receive a French version of
the object, if such an object exists on the server; otherwise, the server should send
its default version. The Accept-language: header is just one of many content
negotiation headers available in HTTP.

Having looked at an example, let us now look at the general format of a request
message, as shown in Figure 2.8. We see that the general format closely follows our
earlier example. You may have noticed, however, that after the header lines (and the
additional carriage return and line feed) there is an “entity body.” The entity body is
empty with the GET method, but is used with the POST method. An HTTP client
often uses the POST method when the user fills out a form—for example, when a
user provides search words to a search engine. With a POST message, the user is still
requesting a Web page from the server, but the specific contents of the Web page

www.someschool.edu

2.2« THE WEB AND HTTP

Request line method |sp URL sp| Version |cr|If

header field name: |sp| value |cr| If

iz
“

Header lines

header field name: |sp| value |cr| If

cr | If

Blank line

Entity body

Figure 2.8 ¢ General format of an HTTP request message

depend on what the user entered into the form fields. If the value of the method field
is POST, then the entity body contains what the user entered into the form fields.

We would be remiss if we didn’t mention that a request generated with a form
does not necessarily use the POST method. Instead, HTML forms often use the GET
method and include the inputted data (in the form fields) in the requested URL. For
example, if a form uses the GET method, has two fields, and the inputs to the two
fields are monkeys and bananas, then the URL will have the structure
www.somesite.com/animalsearch?monkeysé&bananas. In your day-to-
day Web surfing, you have probably noticed extended URLSs of this sort.

The HEAD method is similar to the GET method. When a server receives a
request with the HEAD method, it responds with an HTTP message but it leaves out
the requested object. Application developers often use the HEAD method for debug-
ging. The PUT method is often used in conjunction with Web publishing tools. It
allows a user to upload an object to a specific path (directory) on a specific Web
server. The PUT method is also used by applications that need to upload objects to
Web servers. The DELETE method allows a user, or an application, to delete an
object on a Web server.

HTTP Response Message

Below we provide a typical HTTP response message. This response message could
be the response to the example request message just discussed.

HTTP/1.1 200 OK
Connection: close

107

www.somesite.com/animalsearch?monkeys&bananas

108

CHAPTER 2

e APPLICATION LAYER

Date: Sat, 07 Jul 2007 12:00:15 GMT
Server: Apache/1.3.0 (Unix)

Last-Modified: Sun, 6 May 2007 09:23:24 GMT
Content-Length: 6821

Content-Type: text/html

(data data data data data ...)

Let’s take a careful look at this response message. It has three sections: an ini-
tial status line, six header lines, and then the entity body. The entity body is the
meat of the message—it contains the requested object itself (represented by data
data data data data ...).The status line has three fields: the protocol ver-
sion field, a status code, and a corresponding status message. In this example, the
status line indicates that the server is using HTTP/1.1 and that everything is OK
(that is, the server has found, and is sending, the requested object).

Now let’s look at the header lines. The server uses the Connection: close
header line to tell the client that it is going to close the TCP connection after sending
the message. The Date: header line indicates the time and date when the HTTP
response was created and sent by the server. Note that this is not the time when the
object was created or last modified; it is the time when the server retrieves the
object from its file system, inserts the object into the response message, and sends
the response message. The Server : header line indicates that the message was gen-
erated by an Apache Web server; it is analogous to the User-agent : header line
in the HTTP request message. The Last-Modified: header line indicates the
time and date when the object was created or last modified. The Last-Modified:
header, which we will soon cover in more detail, is critical for object caching, both in
the local client and in network cache servers (also known as proxy servers). The
Content-Length: header line indicates the number of bytes in the object being
sent. The Content-Type: header line indicates that the object in the entity body is
HTML text. (The object type is officially indicated by the Content-Type : header
and not by the file extension.)

Having looked at an example, let’s now examine the general format of a
response message, which is shown in Figure 2.9. This general format of the response
message matches the previous example of a response message. Let’s say a few addi-
tional words about status codes and their phrases. The status code and associated
phrase indicate the result of the request. Some common status codes and associated
phrases include:

° 200 OK: Request succeeded and the information is returned in the response.

°* 301 Moved Permanently: Requested object has been permanently moved;
the new URL is specified in Location: header of the response message. The
client software will automatically retrieve the new URL.

2.2« THE WEB AND HTTP

Status line version |[sp| status code [sp| phrase cr| If
header field name: [sp| value |cr| If
Header lines 5 2
header field name: |sp| value |cr| If
Blank line cr| If
Entity body] J
1

Figure 2.9 ¢ General format of an HTTP response message

° 400 Bad Request: This is a generic error code indicating that the request
could not be understood by the server.

°* 404 Not Found: The requested document does not exist on this server.

* 505 HTTP Version Not Supported: The requested HTTP protocol
version is not supported by the server.

How would you like to see a real HTTP response message? This is highly rec-
ommended and very easy to do! First Telnet into your favorite Web server. Then
type in a one-line request message for some object that is housed on the server. For
example, if you have access to a command prompt, type:

telnet cis.poly.edu 80

GET /~ross/ HTTP/1.1
Host: cis.poly.edu

(Press the carriage return twice after typing the last line.) This opens a TCP connec-
tion to port 80 of the host cis.poly.edu and then sends the HTTP request mes-
sage. You should see a response message that includes the base HTML file of
Professor Ross’s homepage. If you’d rather just see the HTTP message lines and not
receive the object itself, replace GET with HEAD. Finally, replace /~ross/ with
/~banana/ and see what kind of response message you get.

In this section we discussed a number of header lines that can be used within
HTTP request and response messages. The HTTP specification defines many, many

109

110

CHAPTER 2

e APPLICATION LAYER

more header lines that can be inserted by browsers, Web servers, and network cache
servers. We have covered only a small number of the totality of header lines. We’ll
cover a few more below and another small number when we discuss network Web
caching in Section 2.2.5. A highly readable and comprehensive discussion of the
HTTP protocol, including its headers and status codes, is given in [Krishnamurty
2001]; see also [Luotonen 1998] for a developer’s view.

How does a browser decide which header lines to include in a request message?
How does a Web server decide which header lines to include in a response message?
A browser will generate header lines as a function of the browser type and version
(for example, an HTTP/1.0 browser will not generate any 1.1 header lines), the user
configuration of the browser (for example, preferred language), and whether the
browser currently has a cached, but possibly out-of-date, version of the object. Web
servers behave similarly: There are different products, versions, and configurations,
all of which influence which header lines are included in response messages.

2.2.4 User-Server Interaction: Cookies

We mentioned above that an HTTP server is stateless. This simplifies server design
and has permitted engineers to develop high-performance Web servers that can han-
dle thousands of simultaneous TCP connections. However, it is often desirable for a
Web site to identify users, either because the server wishes to restrict user access or
because it wants to serve content as a function of the user identity. For these pur-
poses, HTTP uses cookies. Cookies, defined in RFC 2965, allow sites to keep track
of users. Most major commercial Web sites use cookies today.

As shown in Figure 2.10, cookie technology has four components: (1) a cookie
header line in the HTTP response message; (2) a cookie header line in the HTTP
request message; (3) a cookie file kept on the user’s end system and managed by the
user’s browser; (4) a back-end database at the Web site. Using Figure 2.10, let’s
walk through an example of how cookies work. Suppose Susan, who always
accesses the Web using Internet Explorer from her home PC, contacts Amazon.com
for the first time. Let us suppose that in the past she has already visited the eBay site.
When the request comes into the Amazon Web server, the server creates a unique
identification number and creates an entry in its back-end database that is indexed
by the identification number. The Amazon Web server then responds to Susan’s
browser, including in the HTTP response a Set-cookie: header, which contains
the identification number. For example, the header line might be:

Set-cookie: 1678

When Susan’s browser receives the HTTP response message, it sees the Set-
cookie: header. The browser then appends a line to the special cookie file that it
manages. This line includes the hostname of the server and the identification num-
ber in the Set-cookie: header. Note that the cookie file already has an entry for

2.2 - THE WEB AND HTTP

Client host Server host

ebay: 8734

—— Server creates
ID 1678 for user

8 database
amazon: 1678
ebay: 8734 access
—— Cookie-specific ¢——»
action
One week later
access

8/

amazon: 1678

ebay: 8734 —— Cookie-specific

action

Time Time
Key:
8 Cookie file

Figure 2.10 ¢ Keeping user state with cookies

eBay, since Susan has visited that site in the past. As Susan continues to browse the
Amazon site, each time she requests a Web page, her browser consults her cookie
file, extracts her identification number for this site, and puts a cookie header line
that includes the identification number in the HTTP request. Specifically, each of
her HTTP requests to the Amazon server includes the header line:

Cookie: 1678

entry in backend

112

CHAPTER 2

e APPLICATION LAYER

In this manner, the Amazon server is able to track Susan’s activity at the Amazon
site. Although the Amazon Web site does not necessarily know Susan’s name, it
knows exactly which pages user 1678 visited, in which order, and at what times!
Amazon uses cookies to provide its shopping cart service—Amazon can maintain a
list of all of Susan’s intended purchases, so that she can pay for them collectively at
the end of the session.

If Susan returns to Amazon’s site, say, one week later, her browser will continue
to put the header line Cookie: 1678 in the request messages. Amazon also rec-
ommends products to Susan based on Web pages she has visited at Amazon in the
past. If Susan also registers herself with Amazon—providing full name, e-mail
address, postal address, and credit card information—Amazon can then include this
information in its database, thereby associating Susan’s name with her identification
number (and all of the pages she has visited at the site in the past!). This is how
Amazon and other e-commerce sites provide “one-click shopping”—when Susan
chooses to purchase an item during a subsequent visit, she doesn’t need to re-enter
her name, credit card number, or address.

From this discussion we see that cookies can be used to identify a user. The first
time a user visits a site, the user can provide a user identification (possibly his or her
name). During the subsequent sessions, the browser passes a cookie header to the
server, thereby identifying the user to the server. Cookies can thus be used to create
a user session layer on top of stateless HTTP. For example, when a user logs in to a
Web-based e-mail application (such as Hotmail), the browser sends cookie informa-
tion to the server, permitting the server to identify the user throughout the user’s ses-
sion with the application.

Although cookies often simplify the Internet shopping experience for the user,
they are controversial because they can also be considered as an invasion of privacy.
As we just saw, using a combination of cookies and user-supplied account informa-
tion, a Web site can learn a lot about a user and potentially sell this information to a
third party. Cookie Central [Cookie Central 2008] includes extensive information
on the cookie controversy.

2.2.5 Web Caching

A Web cache—also called a proxy server—is a network entity that satisfies HTTP
requests on the behalf of an origin Web server. The Web cache has its own disk storage
and keeps copies of recently requested objects in this storage. As shown in Figure 2.11, a
user’s browser can be configured so that all of the user’s HTTP requests are first directed
to the Web cache. Once a browser is configured, each browser request for an object is
first directed to the Web cache. As an example, suppose a browser is requesting the
objecthttp://www.someschool.edu/campus.gif. Here is what happens:

1. The browser establishes a TCP connection to the Web cache and sends an
HTTP request for the object to the Web cache.

http://www.someschool.edu/campus.gif

2.2« THE WEB AND HTTP

@ /7'77,0 Proxy \)eﬁy‘

o ’@q(, server Q >

= N w \>\<‘ ®

Client ®re ASQ Origin

0/74.@ Y\ﬂ‘ server

Client Origin
server

Figure 2.11 ¢ Clients requesting objects through a Web cache

2. The Web cache checks to see if it has a copy of the object stored locally. If it
does, the Web cache returns the object within an HTTP response message to
the client browser.

3. If the Web cache does not have the object, the Web cache opens a TCP connec-
tion to the origin server, that is, to www . someschool . edu. The Web cache
then sends an HTTP request for the object into the cache-to-server TCP con-
nection. After receiving this request, the origin server sends the object within
an HTTP response to the Web cache.

4. When the Web cache receives the object, it stores a copy in its local storage and
sends a copy, within an HTTP response message, to the client browser (over the
existing TCP connection between the client browser and the Web cache).

Note that a cache is both a server and a client at the same time. When it receives
requests from and sends responses to a browser, it is a server. When it sends requests
to and receives responses from an origin server, it is a client.

Typically a Web cache is purchased and installed by an ISP. For example, a uni-
versity might install a cache on its campus network and configure all of the campus
browsers to point to the cache. Or a major residential ISP (such as AOL) might
install one or more caches in its network and preconfigure its shipped browsers to
point to the installed caches.

Web caching has seen deployment in the Internet for two reasons. First, a Web
cache can substantially reduce the response time for a client request, particularly if
the bottleneck bandwidth between the client and the origin server is much less than
the bottleneck bandwidth between the client and the cache. If there is a high-speed
connection between the client and the cache, as there often is, and if the cache has
the requested object, then the cache will be able to deliver the object rapidly to the
client. Second, as we will soon illustrate with an example, Web caches can

113

www.someschool.edu

114

CHAPTER 2

e APPLICATION LAYER

Origin servers

Ll!]J

Public Internet
><
15 Mbps access link

S

100 Mbps LAN

Institutional network

Figure 2.12 ¢ Bottleneck between an institutional network and the Internet

substantially reduce traffic on an institution’s access link to the Internet. By reduc-
ing traffic, the institution (for example, a company or a university) does not have to
upgrade bandwidth as quickly, thereby reducing costs. Furthermore, Web caches can
substantially reduce Web traffic in the Internet as a whole, thereby improving per-
formance for all applications.

To gain a deeper understanding of the benefits of caches, let’s consider an
example in the context of Figure 2.12. This figure shows two networks—the institu-
tional network and the rest of the public Internet. The institutional network is a high-
speed LAN. A router in the institutional network and a router in the Internet are
connected by a 15 Mbps link. The origin servers are attached to the Internet but are
located all over the globe. Suppose that the average object size is 1 Mbits and that
the average request rate from the institution’s browsers to the origin servers is 15
requests per second. Suppose that the HTTP request messages are negligibly small
and thus create no traffic in the networks or in the access link (from institutional
router to Internet router). Also suppose that the amount of time it takes from when
the router on the Internet side of the access link in Figure 2.12 forwards an HTTP

2.2+ THE WEB AND HTTP

request (within an IP datagram) until it receives the response (typically within many
IP datagrams) is two seconds on average. Informally, we refer to this last delay as
the “Internet delay.”

The total response time—that is, the time from the browser’s request of an
object until its receipt of the object—is the sum of the LAN delay, the access delay
(that is, the delay between the two routers), and the Internet delay. Let’s now do a
very crude calculation to estimate this delay. The traffic intensity on the LAN (see
Section 1.4.2) is

(15 requests/sec) - (1 Mbits/request)/(100 Mbps) = 0.15

whereas the traffic intensity on the access link (from the Internet router to institution
router) is

(15 requests/sec) - (1 Mbits/request)/(15 Mbps) = 1

A traffic intensity of 0.15 on a LAN typically results in, at most, tens of millisec-
onds of delay; hence, we can neglect the LAN delay. However, as discussed in
Section 1.4.2, as the traffic intensity approaches 1 (as is the case of the access link
in Figure 2.12), the delay on a link becomes very large and grows without bound.
Thus, the average response time to satisfy requests is going to be on the order of
minutes, if not more, which is unacceptable for the institution’s users. Clearly some-
thing must be done.

One possible solution is to increase the access rate from 15 Mbps to, say, 100
Mbps. This will lower the traffic intensity on the access link to 0.15, which trans-
lates to negligible delays between the two routers. In this case, the total response
time will roughly be two seconds, that is, the Internet delay. But this solution also
means that the institution must upgrade its access link from 15 Mbps to 100 Mbps, a
costly proposition.

Now consider the alternative solution of not upgrading the access link but
instead installing a Web cache in the institutional network. This solution is illus-
trated in Figure 2.13. Hit rates—the fraction of requests that are satisfied by a
cache—typically range from 0.2 to 0.7 in practice. For illustrative purposes, let’s
suppose that the cache provides a hit rate of 0.4 for this institution. Because the
clients and the cache are connected to the same high-speed LAN, 40 percent of
the requests will be satisfied almost immediately, say, within 10 milliseconds, by the
cache. Nevertheless, the remaining 60 percent of the requests still need to be satis-
fied by the origin servers. But with only 60 percent of the requested objects passing
through the access link, the traffic intensity on the access link is reduced from 1.0 to
0.6. Typically, a traffic intensity less than 0.8 corresponds to a small delay, say, tens
of milliseconds, on a 15 Mbps link. This delay is negligible compared with the two-
second Internet delay. Given these considerations, average delay therefore is

0.4 - (0.01 seconds) + 0.6 - (2.01 seconds)

115

116

CHAPTER 2

° APPLICATION LAYER

Origin servers

¥,

Public Internet

i

15 Mbps access link
S

100 Mbps LAN

Institutional
Institutional network cache

Figure 2.13 ¢ Adding a cache to the institutional network

which is just slightly greater than 1.2 seconds. Thus, this second solution provides
an even lower response time than the first solution, and it doesn’t require the institu-
tion to upgrade its link to the Internet. The institution does, of course, have to pur-
chase and install a Web cache. But this cost is low—many caches use public-domain
software that runs on inexpensive PCs.

2.2.6 The Conditional GET

Although caching can reduce user-perceived response times, it introduces a new prob-
lem—the copy of an object residing in the cache may be stale. In other words, the
object housed in the Web server may have been modified since the copy was cached
at the client. Fortunately, HTTP has a mechanism that allows a cache to verify that its
objects are up to date. This mechanism is called the conditional GET. An HTTP
request message is a so-called conditional GET message if (1) the request message
uses the GET method and (2) the request message includes an Tf-Modified-
Since: header line.

2.2« THE WEB AND HTTP

To illustrate how the conditional GET operates, let’s walk through an example.
First, on the behalf of a requesting browser, a proxy cache sends a request message
to a Web server:

GET /fruit/kiwi.gif HTTP/1l.1
Host: www.exotiquecuisine.com

Second, the Web server sends a response message with the requested object to the
cache:

HTTP/1.1 200 OK

Date: Sat, 7 Jul 2007 15:39:29

Server: Apache/1.3.0 (Unix)
Last-Modified: Wed, 4 Jul 2007 09:23:24
Content-Type: image/gif

(data data data data data ...)

The cache forwards the object to the requesting browser but also caches the object
locally. Importantly, the cache also stores the last-modified date along with the
object. Third, one week later, another browser requests the same object via the
cache, and the object is still in the cache. Since this object may have been modified
at the Web server in the past week, the cache performs an up-to-date check by issu-
ing a conditional GET. Specifically, the cache sends:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com
If-modified-since: Wed, 4 Jul 2007 09:23:24

Note that the value of the If-modified-since: header line is exactly equal to
the value of the Last-Modified: header line that was sent by the server one
week ago. This conditional GET is telling the server to send the object only if the
object has been modified since the specified date. Suppose the object has not been
modified since 4 Jul 2007 09:23:24. Then, fourth, the Web server sends a response
message to the cache:

HTTP/1.1 304 Not Modified
Date: Sat, 14 Jul 2007 15:39:29
Server: Apache/1.3.0 (Unix)

(empty entity body)

We see that in response to the conditional GET, the Web server still sends a response
message but does not include the requested object in the response message. Including

117

118

CHAPTER 2

e APPLICATION LAYER

the requested object would only waste bandwidth and increase user-perceived response
time, particularly if the object is large. Note that this last response message has 304
Not Modified in the status line, which tells the cache that it can go ahead and for-
ward its (the proxy cache’s) cached copy of the object to the requesting browser.

This ends our discussion of HTTP, the first Internet protocol (an application-
layer protocol) that we’ve studied in detail. We’ve seen the format of HTTP mes-
sages and the actions taken by the Web client and server as these messages are sent
and received. We’ve also studied a bit of the Web’s application infrastructure,
including caches, cookies, and back-end databases, all of which are tied in some
way to the HTTP protocol.

2.3 File Transfer: FTP

In a typical FTP session, the user is sitting in front of one host (the local host) and
wants to transfer files to or from a remote host. In order for the user to access the
remote account, the user must provide a user identification and a password. After pro-
viding this authorization information, the user can transfer files from the local file
system to the remote file system and vice versa. As shown in Figure 2.14, the user
interacts with FTP through an FTP user agent. The user first provides the hostname
of the remote host, causing the FTP client process in the local host to establish a TCP
connection with the FTP server process in the remote host. The user then provides
the user identification and password, which are sent over the TCP connection as part
of FTP commands. Once the server has authorized the user, the user copies one or
more files stored in the local file system into the remote file system (or vice versa).
HTTP and FTP are both file transfer protocols and have many common charac-
teristics; for example, they both run on top of TCP. However, the two application-layer

FTP user FTP) File transfer N FTP

interface client - " server
User

or host

Local file Remote file
system system

Figure 2.14 ¢ FTP moves files between local and remote file systems

2.3 '« FILE TRANSFER: FTP

TCP control connection port 21

TCP data connection port 20

FTP FTP
client server

Figure 2.15 ¢ Control and data connections

protocols have some important differences. The most striking difference is that FTP
uses two parallel TCP connections to transfer a file, a control connection and a data
connection. The control connection is used for sending control information between
the two hosts—information such as user identification, password, commands to
change remote directory, and commands to “put” and “get” files. The data connection
is used to actually send a file. Because FTP uses a separate control connection, FTP is
said to send its control information out-of-band. In Chapter 7 we’ll see that the RTSP
protocol, which is used for controlling the transfer of continuous media such as audio
and video, also sends its control information out-of-band. HTTP, as you recall, sends
request and response header lines into the same TCP connection that carries the trans-
ferred file itself. For this reason, HTTP is said to send its control information in-band.
In the next section we’ll see that SMTP, the main protocol for electronic mail, also
sends control information in-band. The FTP control and data connections are illus-
trated in Figure 2.15.

When a user starts an FTP session with a remote host, the client side of FTP
(user) first initiates a control TCP connection with the server side (remote host) on
server port number 21. The client side of FTP sends the user identification and
password over this control connection. The client side of FTP also sends, over the
control connection, commands to change the remote directory. When the server
side receives a command for a file transfer over the control connection (either to,
or from, the remote host), the server side initiates a TCP data connection to the
client side. FTP sends exactly one file over the data connection and then closes the
data connection. If, during the same session, the user wants to transfer another file,
FTP opens another data connection. Thus, with FTP, the control connection
remains open throughout the duration of the user session, but a new data connec-
tion is created for each file transferred within a session (that is, the data connec-
tions are non-persistent).

Throughout a session, the FTP server must maintain state about the user. In par-
ticular, the server must associate the control connection with a specific user account,
and the server must keep track of the user’s current directory as the user wanders
about the remote directory tree. Keeping track of this state information for each
ongoing user session significantly constrains the total number of sessions that FTP
can maintain simultaneously. Recall that HTTP, on the other hand, is stateless—it
does not have to keep track of any user state.

119

120

CHAPTER 2

e APPLICATION LAYER

2.3.1 FTP Commands and Replies

We end this section with a brief discussion of some of the more common FTP com-
mands and replies. The commands, from client to server, and replies, from server to
client, are sent across the control connection in 7-bit ASCII format. Thus, like HTTP
commands, FTP commands are readable by people. In order to delineate successive
commands, a carriage return and line feed end each command. Each command con-
sists of four uppercase ASCII characters, some with optional arguments. Some of
the more common commands are given below:

° USER username: Used to send the user identification to the server.
* PASS password: Used to send the user password to the server.

e LIST: Used to ask the server to send back a list of all the files in the current
remote directory. The list of files is sent over a (new and non-persistent) data
connection rather than the control TCP connection.

° RETR filename: Used to retrieve (that is, get) a file from the current direc-
tory of the remote host. This command causes the remote host to initiate a data
connection and to send the requested file over the data connection.

° STOR filename: Used to store (that is, put) a file into the current directory
of the remote host.

There is typically a one-to-one correspondence between the command that the
user issues and the FTP command sent across the control connection. Each com-
mand is followed by a reply, sent from server to client. The replies are three-digit
numbers, with an optional message following the number. This is similar in struc-
ture to the status code and phrase in the status line of the HTTP response message.
Some typical replies, along with their possible messages, are as follows:

°* 331 Username OK, password required
e 125 Data connection already open; transfer starting
° 425 Can’'t open data connection

° 452 Error writing file

Readers who are interested in learning about the other FTP commands and replies
are encouraged to read RFC 959.

2.4 Electronic Mail in the Internet

Electronic mail has been around since the beginning of the Internet. It was the most
popular application when the Internet was in its infancy [Segaller 1998], and has

2.4+ ELECTRONIC MAIL IN THE INTERNET

become more and more elaborate and powerful over the years. It remains one of the
Internet’s most important and utilized applications.

As with ordinary postal mail, e-mail is an asynchronous communication
medium—people send and read messages when it is convenient for them, without
having to coordinate with other people’s schedules. In contrast with postal mail, elec-
tronic mail is fast, easy to distribute, and inexpensive. Modern e-mail has many pow-
erful features. Using mailing lists, e-mail messages and spam can be sent to
thousands of recipients at a time. Modern e-mail messages often include attachments,
hyperlinks, HTML-formatted text, and photos.

In this section we examine the application-layer protocols that are at the heart
of Internet e-mail. But before we jump into an in-depth discussion of these proto-
cols, let’s take a high-level view of the Internet mail system and its key components.

Figure 2.16 presents a high-level view of the Internet mail system. We see from
this diagram that it has three major components: user agents, mail servers, and the

=

User agent

SMTP

J,

Z
\

@ ﬁ Mail server
=

User agent W‘ User agent
= User agent
User agent

Key:
N P [t

Figure 2.16 ¢ A high-level view of the Internet e-mail system

121

122

CHAPTER 2

e APPLICATION LAYER

Simple Mail Transfer Protocol (SMTP). We now describe each of these compo-
nents in the context of a sender, Alice, sending an e-mail message to a recipient,
Bob. User agents allow users to read, reply to, forward, save, and compose mes-
sages. (User agents for electronic mail are sometimes called mail readers, although
we generally avoid this term in this book.) When Alice is finished composing her
message, her user agent sends the message to her mail server, where the message is
placed in the mail server’s outgoing message queue. When Bob wants to read a mes-
sage, his user agent retrieves the message from his mailbox in his mail server. In the
late 1990s, graphical user interface (GUI) user agents became popular, allowing
users to view and compose multimedia messages. Currently, Microsoft’s Outlook,
Apple Mail, and Mozilla Thunderbird are among the popular GUI user agents for
e-mail. There are also many text-based e-mail user interfaces in the public domain
(including mail, pine, and elm) as well as Web-based interfaces, as we will see
shortly.

CASE HISTORY

WEB E-MAIL

In December 1995, just a few years after the Web was “invented,” Sabeer Bhatia
and Jack Smith visited the Internet venture capitalist Draper Fisher Jurvetson and
proposed developing a free Web-based e-mail system. The idea was to give a free
e-mail account to anyone who wanted one, and to make the accounts accessible
from the Web. In exchange for 15 percent of the company, Draper Fisher
Jurvetson financed Bhatia and Smith, who formed a company called Hotmail.
With three full-time people and 14 part-time people who worked for stock options,
they were able to develop and launch the service in July 1996. Within a month
after launch, they had 100,000 subscribers. In December 1997, less than 18
months after launching the service, Hotmail had over 12 million subscribers and
was acquired by Microsoft, reportedly for $400 million. The success of Hotmail is
often attributed to its “first-mover advantage” and to the intrinsic “viral marketing”
of e-mail. (Perhaps some of the students reading this book will be among the new
entrepreneurs who conceive and develop first-mover Internet services with inherent
viral marketing.)

Web e-mail continues to thrive, becoming more sophisticated and powerful every
year. One of the most popular services today is Google’s gmail, which offers giga-
bytes of free storage, advanced spam filtering and virus defection, optional e-mail
encryption (using SSL), mail fetching from third-party e-mail services, and a search-
oriented interface.

2.4+ ELECTRONIC MAIL IN THE INTERNET

Mail servers form the core of the e-mail infrastructure. Each recipient, such as Bob,
has a mailbox located in one of the mail servers. Bob’s mailbox manages and maintains
the messages that have been sent to him. A typical message starts its journey in the
sender’s user agent, travels to the sender’s mail server, and travels to the recipient’s mail
server, where it is deposited in the recipient’s mailbox. When Bob wants to access the
messages in his mailbox, the mail server containing his mailbox authenticates Bob (with
usernames and passwords). Alice’s mail server must also deal with failures in Bob’s
mail server. If Alice’s server cannot deliver mail to Bob’s server, Alice’s server holds
the message in a message queue and attempts to transfer the message later. Reattempts
are often done every 30 minutes or so; if there is no success after several days, the server
removes the message and notifies the sender (Alice) with an e-mail message.

SMTP is the principal application-layer protocol for Internet electronic mail. It
uses the reliable data transfer service of TCP to transfer mail from the sender’s mail
server to the recipient’s mail server. As with most application-layer protocols,
SMTP has two sides: a client side, which executes on the sender’s mail server, and a
server side, which executes on the recipient’s mail server. Both the client and server
sides of SMTP run on every mail server. When a mail server sends mail to other
mail servers, it acts as an SMTP client. When a mail server receives mail from other
mail servers, it acts as an SMTP server.

2.4.1 SMTP

SMTP, defined in RFC 5321, is at the heart of Internet electronic mail. As men-
tioned above, SMTP transfers messages from senders’ mail servers to the recipients’
mail servers. SMTP is much older than HTTP. (The original SMTP RFC dates back
to 1982, and SMTP was around long before that.) Although SMTP has numerous
wonderful qualities, as evidenced by its ubiquity in the Internet, it is nevertheless a
legacy technology that possesses certain archaic characteristics. For example, it
restricts the body (not just the headers) of all mail messages to simple 7-bit ASCII.
This restriction made sense in the early 1980s when transmission capacity was
scarce and no one was e-mailing large attachments or large image, audio, or video
files. But today, in the multimedia era, the 7-bit ASCII restriction is a bit of a pain—
it requires binary multimedia data to be encoded to ASCII before being sent over
SMTP; and it requires the corresponding ASCII message to be decoded back to
binary after SMTP transport. Recall from Section 2.2 that HTTP does not require
multimedia data to be ASCII encoded before transfer.

To illustrate the basic operation of SMTP, let’s walk through a common sce-
nario. Suppose Alice wants to send Bob a simple ASCII message.

1. Alice invokes her user agent for e-mail, provides Bob’s e-mail address (for
example, bob@someschool.edu), composes a message, and instructs the
user agent to send the message.

123

124 CHAPTER 2 e APPLICATION LAYER

Bob's
mail server

N

Alice’s
mail server

DY |
ﬁ ﬁ ﬁ SMTP

Alice's
agent

Key:

Wﬂ Message queue User mailbox

Figure 2.17 ¢ Alice sends a message to Bob

2. Alice’s user agent sends the message to her mail server, where it is placed in a
message queue.

3. The client side of SMTP, running on Alice’s mail server, sees the message in
the message queue. It opens a TCP connection to an SMTP server, running on
Bob’s mail server.

4. After some initial SMTP handshaking, the SMTP client sends Alice’s message
into the TCP connection.

5. At Bob’s mail server, the server side of SMTP receives the message. Bob’s
mail server then places the message in Bob’s mailbox.

6. Bob invokes his user agent to read the message at his convenience.

The scenario is summarized in Figure 2.17.

It is important to observe that SMTP does not normally use intermediate mail
servers for sending mail, even when the two mail servers are located at opposite
ends of the world. If Alice’s server is in Hong Kong and Bob’s server is in St. Louis,
the TCP connection is a direct connection between the Hong Kong and St. Louis
servers. In particular, if Bob’s mail server is down, the message remains in Alice’s
mail server and waits for a new attempt—the message does not get placed in some
intermediate mail server.

Let’s now take a closer look at how SMTP transfers a message from a sending
mail server to a receiving mail server. We will see that the SMTP protocol has many
similarities with protocols that are used for face-to-face human interaction. First, the
client SMTP (running on the sending mail server host) has TCP establish a connec-
tion to port 25 at the server SMTP (running on the receiving mail server host). If the
server is down, the client tries again later. Once this connection is established, the
server and client perform some application-layer handshaking—just as humans
often introduce themselves before transferring information from one to another,

2.4+ ELECTRONIC MAIL IN THE INTERNET

SMTP clients and servers introduce themselves before transferring information.
During this SMTP handshaking phase, the SMTP client indicates the e-mail address
of the sender (the person who generated the message) and the e-mail address of the
recipient. Once the SMTP client and server have introduced themselves to each
other, the client sends the message. SMTP can count on the reliable data transfer
service of TCP to get the message to the server without errors. The client then
repeats this process over the same TCP connection if it has other messages to send
to the server; otherwise, it instructs TCP to close the connection.

Let’s next take a look at an example transcript of messages exchanged between an
SMTP client (C) and an SMTP server (S). The hostname of the client is crepes. fr
and the hostname of the server is hamburger.edu. The ASCII text lines prefaced
with C: are exactly the lines the client sends into its TCP socket, and the ASCII text
lines prefaced with S: are exactly the lines the server sends into its TCP socket. The
following transcript begins as soon as the TCP connection is established.

S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>

S: 250 alicel@crepes.fr ... Sender ok

C: RCPT TO: <bob@hamburger.edu<

S: 250 bob@hamburger.edu ... Recipient ok
C: DATA

S: 354 Enter mail, end with “.” on a line by itself
C: Do you like ketchup?

C: How about pickles?

C: .

S: 250 Message accepted for delivery

C: QUIT

S: 221 hamburger.edu closing connection

In the example above, the client sends a message (“Do you like ketchup?
How about pickles?”) from mail server crepes. fr to mail server ham-
burger.edu. As part of the dialogue, the client issued five commands: HELO (an
abbreviation for HELLO), MAIL FROM, RCPT TO, DATA, and QUIT. These com-
mands are self-explanatory. The client also sends a line consisting of a single period,
which indicates the end of the message to the server. (In ASCII jargon, each mes-
sage ends with CRLF . CRLF, where CR and LF stand for carriage return and line
feed, respectively.) The server issues replies to each command, with each reply hav-
ing a reply code and some (optional) English-language explanation. We mention
here that SMTP uses persistent connections: If the sending mail server has several
messages to send to the same receiving mail server, it can send all of the messages

125

126

CHAPTER 2

e APPLICATION LAYER

over the same TCP connection. For each message, the client begins the process with
anew MAIL FROM: crepes. fr, designates the end of message with an isolated
period, and issues QUIT only after all messages have been sent.

It is highly recommended that you use Telnet to carry out a direct dialogue with
an SMTP server. To do this, issue

telnet serverName 25

where serverName is the name of a local mail server. When you do this, you are
simply establishing a TCP connection between your local host and the mail server.
After typing this line, you should immediately receive the 220 reply from the
server. Then issue the SMTP commands HELO, MAIL FROM, RCPT TO, DATA,
CRLF.CRLF, and QUIT at the appropriate times. It is also highly recommended
that you do Programming Assignment 2 at the end of this chapter. In that assign-
ment, you’ll build a simple user agent that implements the client side of SMTP.
It will allow you to send an e-mail message to an arbitrary recipient via a local
mail server.

2.4.2 Comparison with HTTP

Let’s now briefly compare SMTP with HTTP. Both protocols are used to transfer
files from one host to another: HTTP transfers files (also called objects) from a Web
server to a Web client (typically a browser); SMTP transfers files (that is, e-mail
messages) from one mail server to another mail server. When transferring the files,
both persistent HTTP and SMTP use persistent connections. Thus, the two protocols
have common characteristics. However, there are important differences. First,
HTTP is mainly a pull protocol—someone loads information on a Web server and
users use HTTP to pull the information from the server at their convenience. In par-
ticular, the TCP connection is initiated by the machine that wants to receive the file.
On the other hand, SMTP is primarily a push protocol—the sending mail server
pushes the file to the receiving mail server. In particular, the TCP connection is ini-
tiated by the machine that wants to send the file.

A second difference, which we alluded to earlier, is that SMTP requires
each message, including the body of each message, to be in 7-bit ASCII format.
If the message contains characters that are not 7-bit ASCII (for example, French
characters with accents) or contains binary data (such as an image file), then the
message has to be encoded into 7-bit ASCII. HTTP data does not impose this
restriction.

A third important difference concerns how a document consisting of text and
images (along with possibly other media types) is handled. As we learned in Section
2.2, HTTP encapsulates each object in its own HTTP response message. Internet
mail places all of the message’s objects into one message.

2.4+ ELECTRONIC MAIL IN THE INTERNET

2.4.3 Mail Message Formats

When Alice writes an ordinary snail-mail letter to Bob, she may include all kinds
of peripheral header information at the top of the letter, such as Bob’s address, her
own return address, and the date. Similarly, when an e-mail message is sent from
one person to another, a header containing peripheral information precedes the
body of the message itself. This peripheral information is contained in a series of
header lines, which are defined in RFC 5322. The header lines and the body of the
message are separated by a blank line (that is, by CRLF). RFC 5322 specifies the
exact format for mail header lines as well as their semantic interpretations. As with
HTTP, each header line contains readable text, consisting of a keyword followed
by a colon followed by a value. Some of the keywords are required and others are
optional. Every header must have a From: header line and a To: header line; a
header may include a Subject: header line as well as other optional header lines.
It is important to note that these header lines are different from the SMTP com-
mands we studied in Section 2.4.1 (even though they contain some common words
such as “from” and “to”). The commands in that section were part of the SMTP
handshaking protocol; the header lines examined in this section are part of the mail
message itself.
A typical message header looks like this:

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Searching for the meaning of life.

After the message header, a blank line follows; then the message body (in ASCII)
follows. You should use Telnet to send a message to a mail server that contains some
header lines, including the Subject: header line. To do this, issue telnet
serverName 25, as discussed in section 2.4.1.

2.4.4 Mail Access Protocols

Once SMTP delivers the message from Alice’s mail server to Bob’s mail server, the
message is placed in Bob’s mailbox. Throughout this discussion we have tacitly
assumed that Bob reads his mail by logging onto the server host and then executing
a mail reader that runs on that host. Up until the early 1990s this was the standard
way of doing things. But today, mail access uses a client-server architecture—the
typical user reads e-mail with a client that executes on the user’s end system, for
example, on an office PC, a laptop, or a PDA. By executing a mail client on a local
PC, users enjoy a rich set of features, including the ability to view multimedia mes-
sages and attachments.

Given that Bob (the recipient) executes his user agent on his local PC, it is nat-
ural to consider placing a mail server on his local PC as well. With this approach,

127

128

CHAPTER 2

Alice’s
agent

e APPLICATION LAYER

Alice’s mail server would dialogue directly with Bob’s PC. There is a problem with
this approach, however. Recall that a mail server manages mailboxes and runs the
client and server sides of SMTP. If Bob’s mail server were to reside on his local PC,
then Bob’s PC would have to remain always on, and connected to the Internet, in
order to receive new mail, which can arrive at any time. This is impractical for many
Internet users. Instead, a typical user runs a user agent on the local PC but accesses
its mailbox stored on an always-on shared mail server. This mail server is shared
with other users and is typically maintained by the user’s ISP (for example, univer-
sity or company).

Now let’s consider the path an e-mail message takes when it is sent from Alice
to Bob. We just learned that at some point along the path the e-mail message needs
to be deposited in Bob’s mail server. This could be done simply by having Alice’s
user agent send the message directly to Bob’s mail server. And this could be done
with SMTP—indeed, SMTP has been designed for pushing e-mail from one host to
another. However, typically the sender’s user agent does not dialogue directly with
the recipient’s mail server. Instead, as shown in Figure 2.18, Alice’s user agent uses
SMTP to push the e-mail message into her mail server, then Alice’s mail server uses
SMTP (as an SMTP client) to relay the e-mail message to Bob’s mail server. Why
the two-step procedure? Primarily because without relaying through Alice’s mail
server, Alice’s user agent doesn’t have any recourse to an unreachable destination
mail server. By having Alice first deposit the e-mail in her own mail server, Alice’s
mail server can repeatedly try to send the message to Bob’s mail server, say every
30 minutes, until Bob’s mail server becomes operational. (And if Alice’s mail server
is down, then she has the recourse of complaining to her system administrator!) The
SMTP RFC defines how the SMTP commands can be used to relay a message
across multiple SMTP servers.

But there is still one missing piece to the puzzle! How does a recipient like Bob,
running a user agent on his local PC, obtain his messages, which are sitting in a mail
server within Bob’s ISP? Note that Bob’s user agent can’t use SMTP to obtain the
messages because obtaining the messages is a pull operation, whereas SMTP is a

W e
NN NN _,
SMTP SMTP ”\;2;32”

HTTP

LB

v
v

Figure 2.18 ¢ E-mail protocols and their communicating entities

2.4+ ELECTRONIC MAIL IN THE INTERNET

push protocol. The puzzle is completed by introducing a special mail access proto-
col that transfers messages from Bob’s mail server to his local PC. There are cur-
rently a number of popular mail access protocols, including Post Office
Protocol—Version 3 (POP3), Internet Mail Access Protocol (IMAP), and HTTP.

Figure 2.18 provides a summary of the protocols that are used for Internet mail:
SMTP is used to transfer mail from the sender’s mail server to the recipient’s mail
server; SMTP is also used to transfer mail from the sender’s user agent to the
sender’s mail server. A mail access protocol, such as POP3, is used to transfer mail
from the recipient’s mail server to the recipient’s user agent.

POP3

POP3 is an extremely simple mail access protocol. It is defined in [RFC 1939], which
is short and quite readable. Because the protocol is so simple, its functionality is
rather limited. POP3 begins when the user agent (the client) opens a TCP connec-
tion to the mail server (the server) on port 110. With the TCP connection estab-
lished, POP3 progresses through three phases: authorization, transaction, and update.
During the first phase, authorization, the user agent sends a username and a password
(in the clear) to authenticate the user. During the second phase, transaction, the user
agent retrieves messages; also during this phase, the user agent can mark messages
for deletion, remove deletion marks, and obtain mail statistics. The third phase,
update, occurs after the client has issued the quit command, ending the POP3
session; at this time, the mail server deletes the messages that were marked for
deletion.

In a POP3 transaction, the user agent issues commands, and the server responds
to each command with a reply. There are two possible responses: +OK (sometimes
followed by server-to-client data), used by the server to indicate that the previous
command was fine; and -ERR, used by the server to indicate that something was
wrong with the previous command.

The authorization phase has two principal commands: user <username> and
pass <password>. To illustrate these two commands, we suggest that you Telnet
directly into a POP3 server, using port 110, and issue these commands. Suppose that
mailServer is the name of your mail server. You will see something like:

telnet mailServer 110

+0K POP3 server ready

user bob

+0K

pass hungry

+0OK user successfully logged on

If you misspell a command, the POP3 server will reply with an —ERR message.

129

130

CHAPTER 2

e APPLICATION LAYER

Now let’s take a look at the transaction phase. A user agent using POP3 can
often be configured (by the user) to “download and delete” or to “download and
keep.” The sequence of commands issued by a POP3 user agent depends on which
of these two modes the user agent is operating in. In the download-and-delete mode,
the user agent will issue the 1ist, retr, and dele commands. As an example,
suppose the user has two messages in his or her mailbox. In the dialogue below, C:
(standing for client) is the user agent and S: (standing for server) is the mail server.
The transaction will look something like:

C: list

S: 1 498

S: 2 912

S: .

C: retr 1

S: (blah blah

S ittt i i
S: tiieieeccnn blah)
S: .

C: dele 1

C: retr 2

S: (blah blah

S ittt ti i
S: tiieiecccnn blah)
S: .

C: dele 2

C: quit

S: +OK POP3 server signing off

The user agent first asks the mail server to list the size of each of the stored mes-
sages. The user agent then retrieves and deletes each message from the server. Note
that after the authorization phase, the user agent employed only four commands:
list, retr, dele, and quit. The syntax for these commands is defined in RFC
1939. After processing the quit command, the POP3 server enters the update
phase and removes messages 1 and 2 from the mailbox.

A problem with this download-and-delete mode is that the recipient, Bob, may
be nomadic and may want to access his mail messages from multiple machines, for
example, his office PC, his home PC, and his portable computer. The download-
and-delete mode partitions Bob’s mail messages over these three machines; in par-
ticular, if Bob first reads a message on his office PC, he will not be able to reread
the message from his portable at home later in the evening. In the download-and-
keep mode, the user agent leaves the messages on the mail server after downloading
them. In this case, Bob can reread messages from different machines; he can access
a message from work and access it again later in the week from home.

2.4+ ELECTRONIC MAIL IN THE INTERNET

During a POP3 session between a user agent and the mail server, the POP3
server maintains some state information; in particular, it keeps track of which user
messages have been marked deleted. However, the POP3 server does not carry state
information across POP3 sessions. This lack of state information across sessions
greatly simplifies the implementation of a POP3 server.

IMAP

With POP3 access, once Bob has downloaded his messages to the local machine, he
can create mail folders and move the downloaded messages into the folders. Bob
can then delete messages, move messages across folders, and search for messages
(by sender name or subject). But this paradigm—namely, folders and messages in
the local machine—poses a problem for the nomadic user, who would prefer to
maintain a folder hierarchy on a remote server that can be accessed from any com-
puter. This is not possible with POP3—the POP3 protocol does not provide any
means for a user to create remote folders and assign messages to folders.

To solve this and other problems, the IMAP protocol, defined in [RFC 3501],
was invented. Like POP3, IMAP is a mail access protocol. It has many more fea-
tures than POP3, but it is also significantly more complex. (And thus the client and
server side implementations are significantly more complex.)

An IMAP server will associate each message with a folder; when a message first
arrives at the server, it is associated with the recipient’s INBOX folder. The recipient
can then move the message into a new, user-created folder, read the message, delete
the message, and so on. The IMAP protocol provides commands to allow users to
create folders and move messages from one folder to another. IMAP also provides
commands that allow users to search remote folders for messages matching specific
criteria. Note that, unlike POP3, an IMAP server maintains user state information
across IMAP sessions—for example, the names of the folders and which messages
are associated with which folders.

Another important feature of IMAP is that it has commands that permit a user
agent to obtain components of messages. For example, a user agent can obtain just
the message header of a message or just one part of a multipart MIME message.
This feature is useful when there is a low-bandwidth connection (for example, a
slow-speed modem link) between the user agent and its mail server. With a low-
bandwidth connection, the user may not want to download all of the messages in
its mailbox, particularly avoiding long messages that might contain, for example,
an audio or video clip. You can read all about IMAP at the official IMAP site
[IMAP 2009].

Web-Based E-mail

More and more users today are sending and accessing their e-mail through their Web
browsers. Hotmail introduced Web-based access in the mid 1990s; now Web-based

131

132

CHAPTER 2

e APPLICATION LAYER

e-mail is also provided by Yahoo, Google, as well as just about every major univer-
sity and corporation. With this service, the user agent is an ordinary Web browser,
and the user communicates with its remote mailbox via HTTP. When a recipient,
such as Bob, wants to access a message in his mailbox, the e-mail message is sent
from Bob’s mail server to Bob’s browser using the HTTP protocol rather than the
POP3 or IMAP protocol. When a sender, such as Alice, wants to send an e-mail
message, the e-mail message is sent from her browser to her mail server over HTTP
rather than over SMTP. Alice’s mail server, however, still sends messages to, and
receives messages from, other mail servers using SMTP.

2.5 DNS—The Internet’s Directory Service

We human beings can be identified in many ways. For example, we can be identi-
fied by the names that appear on our birth certificates. We can be identified by our
social security numbers. We can be identified by our driver’s license numbers.
Although each of these identifiers can be used to identify people, within a given
context one identifier may be more appropriate than another. For example, the com-
puters at the IRS (the infamous tax-collecting agency in the United States) prefer to
use fixed-length social security numbers rather than birth certificate names. On the
other hand, ordinary people prefer the more mnemonic birth certificate names rather
than social security numbers. (Indeed, can you imagine saying, “Hi. My name is
132-67-9875. Please meet my husband, 178-87-1146.”)

Just as humans can be identified in many ways, so too can Internet hosts. One identi-
fier for a host is its hostname. Hostnames—such as cnn.com, www.yahoo.
com, gaia.cs.umass.edu, and cis.poly.edu—are mnemonic and are there-
fore appreciated by humans. However, hostnames provide little, if any, information about
the location within the Internet of the host. (A hostname such as www.eurecom. fr,
which ends with the country code . £, tells us that the host is probably in France, but
doesn’t say much more.) Furthermore, because hostnames can consist of variable-
length alphanumeric characters, they would be difficult to process by routers. For these
reasons, hosts are also identified by so-called IP addresses.

We discuss IP addresses in some detail in Chapter 4, but it is useful to say a few
brief words about them now. An IP address consists of four bytes and has a rigid
hierarchical structure. An IP address looks like 121.7.106.83, where each
period separates one of the bytes expressed in decimal notation from 0 to 255. An IP
address is hierarchical because as we scan the address from left to right, we obtain
more and more specific information about where the host is located in the Internet
(that is, within which network, in the network of networks). Similarly, when we scan
a postal address from bottom to top, we obtain more and more specific information
about where the addressee is located.

www.yahoo.com
www.yahoo.com
www.eurecom.fr

2.5 '« DNS—THE INTERNET'S DIRECTORY SERVICE

2.5.1 Services Provided by DNS

We have just seen that there are two ways to identify a host—by a hostname and by
an [P address. People prefer the more mnemonic hostname identifier, while routers
prefer fixed-length, hierarchically structured IP addresses. In order to reconcile
these preferences, we need a directory service that translates hostnames to IP
addresses. This is the main task of the Internet’s domain name system (DNS). The
DNS is (1) a distributed database implemented in a hierarchy of DNS servers and
(2) an application-layer protocol that allows hosts to query the distributed database.
The DNS servers are often UNIX machines running the Berkeley Internet Name
Domain (BIND) software [BIND 2009]. The DNS protocol runs over UDP and uses
port 53.

DNS is commonly employed by other application-layer protocols—including
HTTP, SMTP, and FTP—to translate user-supplied hostnames to IP addresses. As
an example, consider what happens when a browser (that is, an HTTP client),
running on some user’s host, requests the URL www.someschool.edu/
index.html. In order for the user’s host to be able to send an HTTP request mes-
sage to the Web server www . someschool . edu, the user’s host must first obtain
the IP address of www . someschool.edu. This is done as follows.

—_

The same user machine runs the client side of the DNS application.

2. The browser extracts the hostname, www . someschool . edu, from the URL
and passes the hostname to the client side of the DNS application.

3. The DNS client sends a query containing the hostname to a DNS server.

4. The DNS client eventually receives a reply, which includes the IP address for
the hostname.

5. Once the browser receives the IP address from DNS, it can initiate a TCP con-

nection to the HTTP server process located at port 80 at that IP address.

We see from this example that DNS adds an additional delay—sometimes substan-
tial—to the Internet applications that use it. Fortunately, as we discuss below, the
desired IP address is often cached in a “nearby” DNS server, which helps to reduce
DNS network traffic as well as the average DNS delay.

DNS provides a few other important services in addition to translating host-
names to IP addresses:

* Host aliasing. A host with a complicated hostname can have one or more alias
names. For example, a hostname such as relayl.west-coast.enter-
prise.com could have, say, two aliases such as enterprise.com and
www.enterprise.com. In this case, the hostname relayl.west-
coast.enterprise.comis said to be a canonical hostname. Alias host-
names, when present, are typically more mnemonic than canonical hostnames.

133

www.someschool.edu/index.html
www.someschool.edu/index.html
www.someschool.edu
www.someschool.edu
www.someschool.edu
www.enterprise.com

134

CHAPTER 2

e APPLICATION LAYER

PRINCIPLES IN PRACTICE

DNS: CRITICAL NETWORK FUNCTIONS VIA THE CLIENT-SERVER
PARADIGM

Like HTTP, FTP, and SMTP, the DNS protocol is an application-layer protocol since it (1) runs
between communicating end systems using the client-server paradigm and (2) relies on an
underlying end-to-end transport protocol to transfer DNS messages between communicating
end systems. In another sense, however, the role of the DNS is quite different from Web,
file transfer, and e-mail applications. Unlike these applications, the DNS is not an applica-
tion with which a user directly interacts. Instead, the DNS provides a core Internet func-
tion—namely, translating hostnames to their underlying IP addresses, for user applications
and other software in the Internet. We noted in Section 1.2 that much of the complexity in
the Internet architecture is located at the “edges” of the network. The DNS, which imple-
ments the critical name-to-address translation process using clients and servers located at
the edge of the network, is yet another example of that design philosophy.

DNS can be invoked by an application to obtain the canonical hostname for a
supplied alias hostname as well as the IP address of the host.

* Mail server aliasing. For obvious reasons, it is highly desirable that e-mail
addresses be mnemonic. For example, if Bob has an account with Hotmail, Bob’s
e-mail address might be as simple as bob@hotmail.com. However, the host-
name of the Hotmail mail server is more complicated and much less mnemonic
than simply hotmail.com (for example, the canonical hostname might be
something like relayl.west-coast.hotmail.com). DNS can be
invoked by a mail application to obtain the canonical hostname for a supplied
alias hostname as well as the IP address of the host. In fact, the MX record (see
below) permits a company’s mail server and Web server to have identical
(aliased) hostnames; for example, a company’s Web server and mail server can
both be called enterprise.com.

* Load distribution. DNS is also used to perform load distribution among replicated
servers, such as replicated Web servers. Busy sites, such as cnn.com, are
replicated over multiple servers, with each server running on a different end system
and each having a different IP address. For replicated Web servers, a set of IP
addresses is thus associated with one canonical hostname. The DNS database con-
tains this set of IP addresses. When clients make a DNS query for a name mapped
to a set of addresses, the server responds with the entire set of IP addresses, but
rotates the ordering of the addresses within each reply. Because a client typically
sends its HTTP request message to the IP address that is listed first in the set, DN'S
rotation distributes the traffic among the replicated servers. DNS rotation is also

2.5 '« DNS—THE INTERNET'S DIRECTORY SERVICE

used for e-mail so that multiple mail servers can have the same alias name.
Recently, content distribution companies such as Akamai [Akamai 2009] have
used DNS in more sophisticated ways to provide Web content distribution (see
Chapter 7).

The DNS is specified in RFC 1034 and RFC 1035, and updated in several addi-
tional RFCs. It is a complex system, and we only touch upon key aspects of its
operation here. The interested reader is referred to these RFCs and the book by Abitz
and Liu [Abitz 1993]; see also the retrospective paper [Mockapetris 1988], which
provides a nice description of the what and why of DNS, and [Mockapetris 2005].

2.5.2 Overview of How DNS Works

We now present a high-level overview of how DNS works. Our discussion will
focus on the hostname-to-IP-address translation service.

Suppose that some application (such as a Web browser or a mail reader)
running in a user’s host needs to translate a hostname to an IP address. The appli-
cation will invoke the client side of DNS, specifying the hostname that needs to be
translated. (On many UNIX-based machines, gethostbyname () is the func-
tion call that an application calls in order to perform the translation. In Section 2.7,
we will show how a Java application can invoke DNS.) DNS in the user’s host
then takes over, sending a query message into the network. All DNS query and
reply messages are sent within UDP datagrams to port 53. After a delay, ranging
from milliseconds to seconds, DNS in the user’s host receives a DNS reply mes-
sage that provides the desired mapping. This mapping is then passed to the invok-
ing application. Thus, from the perspective of the invoking application in the
user’s host, DNS is a black box providing a simple, straightforward translation
service. But in fact, the black box that implements the service is complex, consist-
ing of a large number of DNS servers distributed around the globe, as well as an
application-layer protocol that specifies how the DNS servers and querying hosts
communicate.

A simple design for DNS would have one DNS server that contains all the map-
pings. In this centralized design, clients simply direct all queries to the single DNS
server, and the DNS server responds directly to the querying clients. Although the
simplicity of this design is attractive, it is inappropriate for today’s Internet, with its
vast (and growing) number of hosts. The problems with a centralized design
include:

* A single point of failure. If the DNS server crashes, so does the entire Internet!

* Traffic volume. A single DNS server would have to handle all DNS queries (for
all the HTTP requests and e-mail messages generated from hundreds of millions
of hosts).

135

136

CHAPTER 2

e APPLICATION LAYER

* Distant centralized database. A single DNS server cannot be “close to” all the
querying clients. If we put the single DNS server in New York City, then all
queries from Australia must travel to the other side of the globe, perhaps over
slow and congested links. This can lead to significant delays.

* Maintenance. The single DNS server would have to keep records for all Internet
hosts. Not only would this centralized database be huge, but it would have to be
updated frequently to account for every new host.

In summary, a centralized database in a single DNS server simply doesn 't scale.
Consequently, the DNS is distributed by design. In fact, the DNS is a wonderful
example of how a distributed database can be implemented in the Internet.

A Distributed, Hierarchical Database

In order to deal with the issue of scale, the DNS uses a large number of servers,
organized in a hierarchical fashion and distributed around the world. No single DNS
server has all of the mappings for all of the hosts in the Internet. Instead, the map-
pings are distributed across the DNS servers. To a first approximation, there are
three classes of DNS servers—root DNS servers, top-level domain (TLD) DNS
servers, and authoritative DNS servers—organized in a hierarchy as shown in Fig-
ure 2.19. To understand how these three classes of servers interact, suppose a DNS
client wants to determine the IP address for the hostname www . amazon .com. To
a first approximation, the following events will take place. The client first contacts
one of the root servers, which returns IP addresses for TLD servers for the top-level
domain com. The client then contacts one of these TLD servers, which returns the
IP address of an authoritative server for amazon . com. Finally, the client contacts
one of the authoritative servers for amazon.com, which returns the IP address

Root DNS servers

com DNS servers org DNS servers edu DNS servers
yahoo.com amazon.com pbs.org poly.edu umass.edu
DNS servers DNS servers DNS servers DNS servers DNS servers

Figure 2.19 ¢ Portion of the hierarchy of DNS servers

www.amazon.com

2.5 '« DNS—THE INTERNET'S DIRECTORY SERVICE

a. Verisign, Dulles, VA
c. Cogent, Herndon, VA (also Los Angeles)
d. U Maryland College Park, MD
g. US DoD Vienna, VA
. h. ARL Aberdeen, MD
e. NASA Mt View, CA . e .
f. Internet Software C. I Verisign, (21 locations)
Palo Alto, CA ——i. Autonomica, Stockholm
(and 36 other locations) (plus 28 other locations)
\k. RIPE London
/ (also 16 other locations)
b. USC-ISI Marina del Rey, CA m. WIDE Tokyo
I. ICANN Los Angeles, CA (also Seoul, Paris,

San Franciso)

Figure 2.20 ¢ DNS root servers in 2009 (name, organization, location)

for the hostname www.amazon.com. We’ll soon examine this DNS lookup
process in more detail. But let’s first take a closer look at these three classes of
DNS servers:

* Root DNS servers. In the Internet there are 13 root DNS servers (labeled A
through M), most of which are located in North America. An October 2006 map
of the root DNS servers is shown in Figure 2.20; a list of the current root DNS
servers is available via [Root-servers 2009]. Although we have referred to each
of the 13 root DNS servers as if it were a single server, each “server” is actually
a cluster of replicated servers, for both security and reliability purposes.

* Top-level domain (TLD) servers. These servers are responsible for top-level
domains such as com, org, net, edu, and gov, and all of the country top-level
domains such as uk, fr, ca, and jp. The company Network Solutions maintains
the TLD servers for the com top-level domain, and the company Educause main-
tains the TLD servers for the edu top-level domain.

* Authoritative DNS servers. Every organization with publicly accessible hosts
(such as Web servers and mail servers) on the Internet must provide publicly
accessible DNS records that map the names of those hosts to IP addresses. An
organization’s authoritative DNS server houses these DNS records. An organiza-
tion can choose to implement its own authoritative DNS server to hold these
records; alternatively, the organization can pay to have these records stored in an

137

www.amazon.com

138

CHAPTER 2

e APPLICATION LAYER

authoritative DNS server of some service provider. Most universities and large
companies implement and maintain their own primary and secondary (backup)
authoritative DNS server.

The root, TLD, and authoritative DNS servers all belong to the hierarchy of
DNS servers, as shown in Figure 2.19. There is another important type of DNS
server called the local DNS server. A local DNS server does not strictly belong to
the hierarchy of servers but is nevertheless central to the DNS architecture. Each
ISP—such as a university, an academic department, an employee’s company, or a
residential ISP—has a local DNS server (also called a default name server). When a
host connects to an ISP, the ISP provides the host with the IP addresses of one or
more of its local DNS servers (typically through DHCP, which is discussed in Chap-
ter 4). You can easily determine the IP address of your local DNS server by access-
ing network status windows in Windows or UNIX. A host’s local DNS server is
typically “close to” the host. For an institutional ISP, the local DNS server may be
on the same LAN as the host; for a residential ISP, it is typically separated from the
host by no more than a few routers. When a host makes a DNS query, the query is
sent to the local DNS server, which acts a proxy, forwarding the query into the DNS
server hierarchy, as we’ll discuss in more detail below.

Let’s take a look at a simple example. Suppose the host cis.poly.edu
desires the IP address of gaia.cs.umass.edu. Also suppose that Polytech-
nic’s local DNS server is called dns . poly.edu and that an authoritative DNS
server for gaia.cs.umass.edu is called dns.umass.edu. As shown in
Figure 2.21, the host cis.poly.edu first sends a DNS query message to its
local DNS server, dns.poly.edu. The query message contains the hostname to
be translated, namely, gaia.cs.umass.edu. The local DNS server forwards
the query message to a root DNS server. The root DNS server takes note of the
edu suffix and returns to the local DNS server a list of IP addresses for TLD
servers responsible for edu. The local DNS server then resends the query mes-
sage to one of these TLD servers. The TLD server takes note of the umass.edu
suffix and responds with the IP address of the authoritative DNS server for the
University of Massachusetts, namely, dns .umass . edu. Finally, the local DNS
server resends the query message directly to dns.umass . edu, which responds
with the IP address of gaia.cs.umass.edu. Note that in this example, in
order to obtain the mapping for one hostname, eight DNS messages were sent:
four query messages and four reply messages! We’ll soon see how DNS caching
reduces this query traffic.

Our previous example assumed that the TLD server knows the authoritative
DNS server for the hostname. In general this not always true. Instead, the TLD
server may know only of an intermediate DNS server, which in turn knows the
authoritative DNS server for the hostname. For example, suppose again that
the University of Massachusetts has a DNS server for the university, called

2.5 '« DNS—THE INTERNET'S DIRECTORY SERVICE 139

Root DNS server

&
.—@@ﬁ.

Local DNS server TLD DNS server
dns.poly.edu

i N

Authoritative DNS server
dns.umass.edu

Requesting host
cis.poly.edu
=

gaia.cs.umass.edu

1 e

Figure 2.21 ¢ Interaction of the various DNS servers

dns.umass.edu. Also suppose that each of the departments at the University
of Massachusetts has its own DNS server, and that each departmental DNS
server is authoritative for all hosts in the department. In this case, when the inter-
mediate DNS server, dns.umass . edu, receives a query for a host with a host-
name ending with c¢s.umass . edu, it returns to dns . poly.edu the IP address
of dns.cs.umass.edu, which is authoritative for all hostnames ending with
cs.umass .edu. The local DNS server dns.poly.edu then sends the query to
the authoritative DNS server, which returns the desired mapping to the local DNS
server, which in turn returns the mapping to the requesting host. In this case, a total
of 10 DNS messages are sent!

The example shown in Figure 2.21 makes use of both recursive queries and
iterative queries. The query sent from cis.poly.eduto dns.poly.eduisa
recursive query, since the query asks dns.poly.edu to obtain the mapping on its

140 CHAPTER 2 e APPLICATION LAYER

Root DNS server

Local DNS server TLD DNS server
dns.poly.edu

L
IO

Authoritative DNS server

Requesting host dns.umass.edu

cis.poly.edu

.

gaia.cs.umass.edu

Figure 2.22 ¢ Recursive queries in DNS

behalf. But the subsequent three queries are iterative since all of the replies are
directly returned to dns.poly.edu. In theory, any DNS query can be iterative or
recursive. For example, Figure 2.22 shows a DNS query chain for which all of
the queries are recursive. In practice, the queries typically follow the pattern in
Figure 2.21: The query from the requesting host to the local DNS server is recur-
sive, and the remaining queries are iterative.

DNS Caching

Our discussion thus far has ignored DNS caching, a critically important feature of the
DNS system. In truth, DNS extensively exploits DNS caching in order to improve the
delay performance and to reduce the number of DNS messages ricocheting around the

2.5 '« DNS—THE INTERNET'S DIRECTORY SERVICE

Internet. The idea behind DNS caching is very simple. In a query chain, when a DNS
server receives a DNS reply (containing, for example, a mapping from a hostname to
an IP address), it can cache the mapping in its local memory. For example, in Figure
2.21, each time the local DNS server dns.poly.edu receives a reply from some
DNS server, it can cache any of the information contained in the reply. If a hostname/IP
address pair is cached in a DNS server and another query arrives to the DNS server for
the same hostname, the DNS server can provide the desired IP address, even if it is not
authoritative for the hostname. Because hosts and mappings between hostnames and IP
addresses are by no means permanent, DNS servers discard cached information after a
period of time (often set to two days).

As an example, suppose that a host apricot.poly.edu queries
dns.poly.edu for the IP address for the hostname cnn . com. Furthermore, sup-
pose that a few hours later, another Polytechnic University host, say, kiwi.poly. fr,
also queries dns . poly.edu with the same hostname. Because of caching, the local
DNS server will be able to immediately return the IP address of cnn . com to this sec-
ond requesting host without having to query any other DNS servers. A local DNS
server can also cache the IP addresses of TLD servers, thereby allowing the local DN'S
server to bypass the root DNS servers in a query chain (this often happens).

2.5.3 DNS Records and Messages

The DNS servers that together implement the DNS distributed database store
resource records (RRs), including RRs that provide hostname-to-IP address map-
pings. Each DNS reply message carries one or more resource records. In this and
the following subsection, we provide a brief overview of DNS resource records and
messages; more details can be found in [Abitz 1993] or in the DNS RFCs [RFC
1034; RFC 1035].

A resource record is a four-tuple that contains the following fields:

(Name, Value, Type, TTL)

TTL is the time to live of the resource record; it determines when a resource should
be removed from a cache. In the example records given below, we ignore the TTL
field. The meaning of Name and Value depend on Type:

* If Type=A, then Name is a hostname and Value is the IP address for the host-
name. Thus, a Type A record provides the standard hostname-to-IP address map-
ping. As an example, (relayl.bar.foo.com, 145.37.93.126, A)
is a Type A record.

* If Type=NS, then Name is a domain (such as foo.com) and Value is the host-
name of an authoritative DNS server that knows how to obtain the IP addresses
for hosts in the domain. This record is used to route DNS queries further along in

141

142

CHAPTER 2

e APPLICATION LAYER

the query chain. As an example, (foo.com, dns.foo.com, NS) isaType
NS record.

* If Type=CNAME, then Value is a canonical hostname for the alias hostname
Name. This record can provide querying hosts the canonical name for a host-
name. As an example, (foo.com, relayl.bar.foo.com, CNAME) isa
CNAME record.

* If Type=MX, then Value is the canonical name of a mail server that has an alias
hostname Name. As an example, (foo.com. mail.bar.foo.com, MX)
is an MX record. MX records allow the hostnames of mail servers to have sim-
ple aliases. Note that by using the MX record, a company can have the same
aliased name for its mail server and for one of its other servers (such as its Web
server). To obtain the canonical name for the mail server, a DNS client would
query for an MX record; to obtain the canonical name for the other server, the
DNS client would query for the CNAME record.

If a DNS server is authoritative for a particular hostname, then the DNS server will
contain a Type A record for the hostname. (Even if the DNS server is not authoritative,
it may contain a Type A record in its cache.) If a server is not authoritative for a host-
name, then the server will contain a Type NS record for the domain that includes the
hostname; it will also contain a Type A record that provides the IP address of the DNS
server in the Value field of the NS record. As an example, suppose an edu TLD server
is not authoritative for the host gaia.cs.umass.edu. Then this server will contain
a record for a domain that includes the host gaia.cs.umass.edu, for example,
(umass.edu, dns.umass.edu, NS).Theedu TLD server would also contain
a Type A record, which maps the DNS server dns . umass . edu to an IP address, for
example, (dns.umass.edu, 128.119.40.111, A).

DNS Messages

Earlier in this section we referred to DNS query and reply messages. These are the
only two kinds of DNS messages. Furthermore, both query and reply messages have
the same format, as shown in Figure 2.23.The semantics of the various fields in a
DNS message are as follows:

* The first 12 bytes is the header section, which has a number of fields. The first field
is a 16-bit number that identifies the query. This identifier is copied into the reply
message to a query, allowing the client to match received replies with sent queries.
There are a number of flags in the flag field. A 1-bit query/reply flag indicates
whether the message is a query (0) or a reply (1). A 1-bit authoritative flag is set in a
reply message when a DNS server is an authoritative server for a queried name. A
1-bit recursion-desired flag is set when a client (host or DNS server) desires that the
DNS server perform recursion when it doesn’t have the record. A 1-bit recursion-
available field is set in a reply if the DNS server supports recursion. In the header,

2.5 '« DNS—THE INTERNET'S DIRECTORY SERVICE

Identification Flags
Number of questions Number of answer RRs —12 bytes
Number of authority RRs Number of additional RRs
Questions |

(variable number of questions) ~Name, type fields for
a query
Answers

. I-RRs in response to quer
(variable number of resource records) P query

) Authority -Records for
(variable number of resource records) authoritative servers
Additional information |_Additional “helpful”

(variable number of resource records) info that may be used

Figure 2.23 ¢ DNS message format

there are also four number-of fields. These fields indicate the number of occurrences
of the four types of data sections that follow the header.

* The question section contains information about the query that is being made.
This section includes (1) a name field that contains the name that is being
queried, and (2) a type field that indicates the type of question being asked about
the name—for example, a host address associated with a name (Type A) or the
mail server for a name (Type MX).

e Inareply from a DNS server, the answer section contains the resource records
for the name that was originally queried. Recall that in each resource record there
is the Type (for example, A, NS, CNAME, and MX), the Value, and the TTL.
A reply can return multiple RRs in the answer, since a hostname can have multi-
ple IP addresses (for example, for replicated Web servers, as discussed earlier in
this section).

* The authority section contains records of other authoritative servers.

* The additional section contains other helpful records. For example, the answer
field in a reply to an MX query contains a resource record providing the canoni-
cal hostname of a mail server. The additional section contains a Type A record
providing the IP address for the canonical hostname of the mail server.

How would you like to send a DNS query message directly from the host
you’re working on to some DNS server? This can easily be done with the nslookup

143

144

CHAPTER 2

e APPLICATION LAYER

program, which is available from most Windows and UNIX platforms. For example,
from a Windows host, open the Command Prompt and invoke the nslookup program
by simply typing “nslookup.” After invoking nslookup, you can send a DNS query to
any DNS server (root, TLD, or authoritative). After receiving the reply message from
the DNS server, nslookup will display the records included in the reply (in a human-
readable format). As an alternative to running nslookup from your own host, you can
visit one of many Web sites that allow you to remotely employ nslookup. (Just type
“nslookup” into a search engine and you’ll be brought to one of these sites.)

Inserting Records into the DNS Database

The discussion above focused on how records are retrieved from the DNS database.
You might be wondering how records get into the database in the first place. Let’s
look at how this is done in the context of a specific example. Suppose you have just
created an exciting new startup company called Network Utopia. The first thing
you’ll surely want to do is register the domain name networkutopia.comat a
registrar. A registrar is a commercial entity that verifies the uniqueness of the
domain name, enters the domain name into the DNS database (as discussed below),
and collects a small fee from you for its services. Prior to 1999, a single registrar,
Network Solutions, had a monopoly on domain name registration for com, net,
and org domains. But now there are many registrars competing for customers, and
the Internet Corporation for Assigned Names and Numbers (ICANN) accredits the
various registrars. A complete list of accredited registrars is available at
http://www.internic.net.

When you register the domain name networkutopia.com with some reg-
istrar, you also need to provide the registrar with the names and IP addresses of your
primary and secondary authoritative DNS servers. Suppose the names and IP
addresses are dns1l.networkutopia.com, dns2.networkutopia.com,
212.212.212.1, and 212.212.212.2. For each of these two authoritative
DNS servers, the registrar would then make sure that a Type NS and a Type A record
are entered into the TLD com servers. Specifically, for the primary authoritative
server for networkutopia.com, the registrar would insert the following two
resource records into the DNS system:

(networkutopia.com, dnsl.networkutopia.com, NS)
(dnsl.networkutopia.com, 212.212.212.1, A)

You’ll also have to make sure that the Type A resource record for your Web server
www . networkutopia.com and the Type MX resource record for your mail server
mail.networkutopia.com are entered into your authoritative DNS servers.
(Until recently, the contents of each DNS server were configured statically, for exam-
ple, from a configuration file created by a system manager. More recently, an

http://www.internic.net
www.networkutopia.com

2.5 '« DNS—THE INTERNET'S DIRECTORY SERVICE 145

"FOCUS ON SECURITY

DNS VULNERABILITIES

We have seen that DNS is a critical component of the Internet infrastructure, with
many important services - including the Web and e-mail - simply incapable of func-
tioning without it. We therefore naturally ask, how can DNS be attacked? Is DNS a
sifting duck, waiting to be knocked out of service, while taking most Internet applica-
tions down with it2

The first type of attack that comes to mind is a DDoS bandwidth-flooding attack (see
Section 1.6) against DNS servers. For example, an attacker could attempt to send to
each DNS root server a deluge of packets, so many that the majority of legitimate DNS
queries never get answered. Such a large-scale DDo$S attack against DNS root servers
actually took place on Octobter 21, 2002. In this attack, the attackers leveraged a bot-
net fo send truck loads of ICMP ping messages to each of the 13 DNS root servers.
(ICMP messages are discussed in Chapter 4. For now, it suffices to know that ICMP pack-
ets are special types of IP datagrams.) Fortunately, this large-scale attack caused minimal
damage, having little or no impact on users’ Internet experience. The attackers did
succeed at direcfing a deluge of packets at the root servers. But many of the DNS root
servers were profected by packet filters, configured to always block all ICMP ping
messages directed at the root servers. These protected servers were thus spared and
functioned as normal. Furthermore, most local DNS servers cache the IP addresses of top-
level-domain servers, allowing the query process fo often bypass the DNS root servers.

A potentially more effective DDoS attack against DNS would be send a deluge of
DNS queries to top-level-domain servers, for example, to all the top-level-domain
servers that handle the .com domain. It would be harder fo filter DNS queries direct-
ed to DNS servers; and top-level-domain severs are not as easily bypassed as are
root servers. But the severity of such an attack would be partially mitigated by
caching in local DNS servers.

DNS could potentially be attacked in other ways. In a man-inthe-middle attack,
the attacker intercepts queries from hosts and returns bogus replies. In the DNS poi-
soning attack, the attacker sends bogus replies to a DNS server, tricking the server
info accepting bogus records into its cache. Either of these attacks could be used, for
example, to redirect an unsuspecting Web user to the attacker’s Web site. These
attacks, however, are difficult to implement, as they require intercepting packets or
throttling servers [Skoudis 2006].

Another important DNS attack is not an attack on the DNS service per se, but
instead exploits the DNS infrastructure to launch a DDo$S attack against a targeted host
(for example, your university’s mail server). In this attack, the attacker sends DNS
queries to many authoritative DNS servers, with each query having the spoofed source
address of the targeted host. The DNS servers then send their replies directly to the tar-
geted host. If the queries can be crafted in such a way that a response is much larger

146

CHAPTER 2

e APPLICATION LAYER

FOCUS ON SECURITY

(in bytes) than a query (so-called amplification), then the attacker can potentially over-

whelm the target without having to generate much of its own traffic. Such reflection
attacks exploiting DNS have had limited success to date [Mirkovic 2005].

In summary, DNS has demonstrated itself to be surprisingly robust against attacks.
To date, there hasn’t been an attack that has successfully impeded the DNS service.
There have been successful reflector attacks; however, these attacks can be (and are
being) addressed by appropriate configuration of DNS servers.

UPDATE option has been added to the DNS protocol to allow data to be dynamically
added or deleted from the database via DNS messages. [RFC 2136] and [RFC 3007]
specify DNS dynamic updates.)

Once all of these steps are completed, people will be able to visit your Web site
and send e-mail to the employees at your company. Let’s conclude our discussion of
DNS by verifying that this statement is true. This verification also helps to solidify what
we have learned about DNS. Suppose Alice in Australia wants to view the Web page
www.networkutopia.com. As discussed earlier, her host will first send a DNS
query to her local DNS server. The local DNS server will then contact a TLD com
server. (The local DNS server will also have to contact a root DNS server if the address
of a TLD com server is not cached.) This TLD server contains the Type NS and Type A
resource records listed above, because the registrar had these resource records inserted
into all of the TLD com servers. The TLD com server sends a reply to Alice’s local
DNS server, with the reply containing the two resource records. The local DNS server
then sends a DNS query to 212.212.212. 1, asking for the Type A record corre-
sponding to www . networkutopia.com. This record provides the IP address of the
desired Web server, say, 212.212.71.4, which the local DNS server passes back to
Alice’s host. Alice’s browser can now initiate a TCP connection to the host
212.212.71.4 and send an HTTP request over the connection. Whew! There’s a lot
more going on than what meets the eye when one surfs the Web!

2.6 Peer-to-Peer Applications

The applications described in this chapter thus far—including the Web, e-mail, and
DNS—all employ client-server architectures with significant reliance on always-on
infrastructure servers. Recall from Section 2.1.1 that with a P2P architecture, there
is minimal (or no) reliance on always-on infrastructure servers. Instead, pairs of
intermittently connected hosts, called peers, communicate directly with each other.
The peers are not owned by a service provider, but are instead desktops and laptops
controlled by users.

www.networkutopia.com
www.networkutopia.com

2.6« PEER-TO-PEER APPLICATIONS

In this section we’ll examine three different applications that are particularly
well-suited for P2P designs. The first is file distribution, where the application dis-
tributes a file from a single source to a large number of peers. File distribution is a
nice place to start our investigation of P2P, as it clearly exposes the self-scalability
of P2P architectures. As a specific example for file distribution, we’ll describe
the popular BitTorrent system. The second P2P application we’ll examine is a
database distributed over a large community of peers. For this application, we’ll
explore the concept of a Distributed Hash Table (DHT). Finally, for our third
application, we’ll examine Skype, a phenomenally successful P2P Internet teleph-
ony application.

2.6.1 P2P File Distribution

We begin our foray into P2P by considering a very natural application, namely, dis-
tributing a large file from a single server to a large number of hosts (called peers).
The file might be a new version of the Linux operating system, a software patch for
an existing operating system or application, an MP3 music file, or an MPEG video
file. In client-server file distribution, the server must send a copy of the file to each
of the peers—placing an enormous burden on the server and consuming a large
amount of server bandwidth. In P2P file distribution, each peer can redistribute any
portion of the file it has received to any other peers, thereby assisting the server in
the distribution process. As of this writing (Fall 2009), the most popular P2P file dis-
tribution protocol is BitTorrent [BitTorrent 2009]. Originally developed by Bram
Cohen (see the interview with Bram Cohen at the end of this chapter), there are now
many different independent BitTorrent clients conforming to the BitTorrent proto-
col, just as there are a number of Web browser clients that conform to the HTTP pro-
tocol. In this subsection, we first examine the self-scalability of P2P architectures in
the context of file distribution. We then describe BitTorrent in some detail, high-
lighting its most important characteristics and features.

Scalability of P2P Architectures

To compare client-server architectures with peer-to-peer architectures, and illustrate
the inherent self-scalability of P2P, we now consider a simple quantitative model for
distributing a file to a fixed set of peers for both architecture types. As shown in Fig-
ure 2.24, the server and the peers are connected to the Internet with access links.
Denote the upload rate of the server’s access link by u, the upload rate of the ith
peer’s access link by u;, and the download rate of the ith peer’s access link by d..
Also denote the size of the file to be distributed (in bits) by F and the number of
peers that want to obtain a copy of the file by N. The distribution time is the time it
takes to get a copy of the file to all N peers. In our analysis of the distribution time
below, for both client-server and P2P architectures, we make the simplifying (and
generally accurate [Akella 2003]) assumption that the Internet core has abundant

147

148

CHAPTER 2

e APPLICATION LAYER

R

F|Ie F
Server

o

dN
<\
Q D E— Internet

Figure 2.24 ¢ An illustrative file distribution problem

bandwidth, implying that all of the bottlenecks are in network access. We also sup-
pose that the server and clients are not participating in any other network applica-
tions, so that all of their upload and download access bandwidth can be fully
devoted to distributing this file.

Let’s first determine the distribution time for the client-server architecture,
which we denote by D, . In the client-server architecture, none of the peers aids in
distributing the file. We make the following observations:

* The server must transmit one copy of the file to each of the N peers. Thus the
server must transmit NF bits. Since the server’s upload rate is U, the time to dis-
tribute the file must be at least NF/u_.

* Letd, ,, denote the download rate of the peer with the lowest download rate, that
is, d .. = min{dl,dp,...,dN}. The peer with the lowest download rate cannot
obtain all F bits of the file in less than F/d_, seconds. Thus the minimum distri-
bution time is at least F/d_, .

Putting these two observations together, we obtain

(NEDE

Ug dmin

D = max
cSs

2.6« PEER-TO-PEER APPLICATIONS

This provides a lower bound on the minimum distribution time for the client-server
architecture. In the homework problems you will be asked to show that the server
can schedule its transmissions so that the lower bound is actually achieved. So let’s
take this lower bound provided above as the actual distribution time, that is,

Dcs:max{ﬂ, F } (2.1)
Ug dmin

We see from Equation 2.1 that for N large enough, the client-server distribution time
is given by NF/u . Thus, the distribution time increases linearly with the number of
peers N. So, for example, if the number of peers from one week to the next increases
a thousand-fold from a thousand to a million, the time required to distribute the file
to all peers increases by 1,000.

Let’s now go through a similar analysis for the P2P architecture, where each
peer can assist the server in distributing the file. In particular, when a peer receives
some file data, it can use its own upload capacity to redistribute the data to other
peers. Calculating the distribution time for the P2P architecture is somewhat more
complicated than for the client-server architecture, since the distribution time
depends on how each peer distributes portions of the file to the other peers. Never-
theless, a simple expression for the minimal distribution time can be obtained
[Kumar 2006]. To this end, we first make the following observations:

* At the beginning of the distribution, only the server has the file. To get this file
into the community of peers, the server must send each bit of the file at least once
into its access link. Thus, the minimum distribution time is at least Flu. (Unlike
the client-server scheme, a bit sent once by the server may not have to be sent by
the server again, as the peers may redistribute the bit among themselves.)

* As with the client-server architecture, the peer with the lowest download rate
cannot obtain all F bits of the file in less than F/d_; seconds. Thus the minimum
distribution time is at least F/d__ .

* Finally, observe that the total upload capacity of the system as a whole is equal
to the upload rate of the server plus the upload rates of each of the individual
peers, thatis, u = u +u, + ... + u,. The system must deliver (upload) F bits
to each of the N peers, thus delivering a total of NF bits. This cannot be done at a
rate faster than Uy Thus, the minimum distribution time is also at least
NF/(ug +uy + ... +uy).

Putting these three observations together, we obtain the minimum distribution time
for P2P, denoted by D, .

DPZPZmaX {i, F 5 L} (22)

Ug dmin

149

150

CHAPTER 2

* APPLICATION LAYER

Equation 2.2 provides a lower bound for the minimum distribution time for the P2P
architecture. It turns out that if we imagine that each peer can redistribute a bit as
soon as it receives the bit, then there is a redistribution scheme that actually achieves
this lower bound [Kumar 2006]. (We will prove a special case of this result in the
homework.) In reality, where chunks of the file are redistributed rather than individ-
ual bits, Equation 2.2 serves as a good approximation of the actual minimum distri-
bution time. Thus, let’s take the lower bound provided by Equation 2.2 as the actual
minimum distribution time, that is,

Dpyp=max{ " dF , N—I;} (2.3)
Ug min u,+ z u;

i=1

Figure 2.25 compares the minimum distribution time for the client-server and
P2P architectures assuming that all peers have the same upload rate u. In Figure
2.25, we have set F/u = 1 hour, u = 10u,and d . > u. Thus, a peer can transmit the
entire file in one hour, the server transmission rate is 10 times the peer upload rate,
and (for simplicity) the peer download rates are set large enough so as not to have
an effect. We see from Figure 2.25 that for the client-server architecture, the dis-
tribution time increases linearly and without bound as the number of peers
increases. However, for the P2P architecture, the minimal distribution time is not
only always less than the distribution time of the client-server architecture; it is also
less than one hour for any number of peers N. Thus, applications with the P2P

3.5

3.0
Client-Server

2.5+

2.0+

Minimum distributioin tiime

Figure 2.25 ¢ Distribution time for P2P and client-server architectures

2.6« PEER-TO-PEER APPLICATIONS

architecture can be self-scaling. This scalability is a direct consequence of peers
being redistributors as well as consumers of bits.

BitTorrent

BitTorrent is a popular P2P protocol for file distribution [BitTorrent 2009]. In
BitTorrent lingo, the collection of all peers participating in the distribution of a par-
ticular file is called a forrent. Peers in a torrent download equal-size chunks of the
file from one another, with a typical chunk size of 256 KBytes. When a peer first
joins a torrent, it has no chunks. Over time it accumulates more and more chunks.
While it downloads chunks it also uploads chunks to other peers. Once a peer has
acquired the entire file, it may (selfishly) leave the torrent, or (altruistically) remain
in the torrent and continue to upload chunks to other peers. Also, any peer may leave
the torrent at any time with only a subset of chunks, and later rejoin the torrent.

Let’s now take a closer look at how BitTorrent operates. Since BitTorrent is a
rather complicated protocol and system, we’ll only describe its most important
mechanisms, sweeping some of the details under the rug; this will allow us to see
the forest through the trees. Each torrent has an infrastructure node called a tracker.
When a peer joins a torrent, it registers itself with the tracker and periodically
informs the tracker that it is still in the torrent. In this manner, the tracker keeps
track of the peers that are participating in the torrent. A given torrent may have
fewer than ten or more than a thousand peers participating at any instant of time.

As shown in Figure 2.26, when a new peer, Alice, joins the torrent, the tracker
randomly selects a subset of peers (for concreteness, say 50) from the set of participat-
ing peers, and sends the IP addresses of these 50 peers to Alice. Possessing this list of
peers, Alice attempts to establish concurrent TCP connections with all the peers on this
list. Let’s call all the peers with which Alice succeeds in establishing a TCP connec-
tion “neighboring peers.” (In Figure 2.26, Alice is shown to have only three neighbor-
ing peers. Normally, she would have many more.) As time evolves, some of these
peers may leave and other peers (outside the initial 50) may attempt to establish TCP
connections with Alice. So a peer’s neighboring peers will fluctuate over time.

At any given time, each peer will have a subset of chunks from the file, with
different peers having different subsets. Periodically, Alice will ask each of her
neighboring peers (over the TCP connections) for the list of that chunks they have. If
Alice has L different neighbors, she will obtain L lists of chunks. With this knowl-
edge, Alice will issue requests (again over the TCP connections) for chunks she cur-
rently does not have.

So at any given instant of time, Alice will have a subset of chunks and will
know which chunks her neighbors have. With this information, Alice will have two
important decisions to make. First, which chunks should she request first from her
neighbors? And second, to which of her neighbors should she send requested
chunks? In deciding which chunks to request, Alice uses a technique called rarest

151

152 CHAPTER 2 e APPLICATION LAYER

Tracker

Trading chunks

Figure 2.26 ¢ File distribution with BitTorrent

first. The idea is to determine, from among the chunks she does not have, the
chunks that are the rarest among her neighbors (that is, the chunks that have the
fewest repeated copies among her neighbors) and then request those rarest chunks
first. In this manner, the rarest chunks get more quickly redistributed, aiming to
(roughly) equalize the numbers of copies of each chunk in the torrent.

To determine which requests she responds to, BitTorrent uses a clever trading
algorithm. The basic idea is that Alice gives priority to the neighbors that are cur-
rently supplying her data at the highest rate. Specifically, for each of her neighbors,
Alice continually measures the rate at which she receives bits and determines the four
peers that are feeding her bits at the highest rate. She then reciprocates by sending
chunks to these same four peers. Every 10 seconds, she recalculates the rates and pos-
sibly modifies the set of four peers. In BitTorrent lingo, these four peers are said to
be unchoked. Importantly, every 30 seconds, she also picks one additional neighbor
at random and sends it chunks. Let’s call the randomly chosen peer Bob. In BitTor-
rent lingo, Bob is said to be optimistically unchoked. Because Alice is sending data
to Bob, she may become one of Bob’s top four uploaders, in which case Bob would
start to send data to Alice. If the rate at which Bob sends data to Alice is high enough,

2.6« PEER-TO-PEER APPLICATIONS

Bob could then, in turn, become one of Alice’s top four uploaders. In other words,
every 30 seconds, Alice will randomly choose a new trading partner and initiate trad-
ing with that partner. If the two peers are satisfied with the trading, they will put each
other in their top four lists and continue trading with each other until one of the peers
finds a better partner. The effect is that peers capable of uploading at compatible rates
tend to find each other. The random neighbor selection also allows new peers to get
chunks, so that they can have something to trade. All other neighboring peers besides
these five peers (four “top” peers and one probing peer) are “‘choked,” that is, they do
not receive any chunks from Alice. BitTorrent has a number of interesting mecha-
nisms that are not discussed here, including pieces (mini-chunks), pipelining, random
first selection, endgame mode, and anti-snubbing [Cohen 2003].

The incentive mechanism for trading just described is often referred to as tit-for-tat
[Cohen 2003]. It has been shown that this incentive scheme can be circumvented
[Liogkas 2006; Locher 2006; Piatek 2007]. Nevertheless, the BitTorrent ecosystem is
wildly successful, with millions of simultaneous peers actively sharing files in hun-
dreds of thousands of torrents. If BitTorrent had been designed without tit-for-tat (or a
variant), but otherwise exactly the same, BitTorrent would likely not even exist now, as
the majority of the users would have been freeriders [Saroiu 2002].

Interesting variants of the BitTorrent protocol are proposed [Guo 2005; Piatek
2007]. Also, many of the P2P live streaming applications, such as PPLive and
ppstream, have been inspired by BitTorrent [Hei 2007].

2.6.2 Distributed Hash Tables (DHTs)

A critical component of many P2P applications and other distributed applications is
an index (that is, a simple database), supporting search and update operations. When
this database is distributed, the peers may perform content caching and sophisticated
routing of queries among themselves. Since information indexing and searching is
such a critical component in such systems, we’ll now cover one popular indexing
and searching technique, Distributed Hash Tables (DHTs).

Let’s thus consider building a simple distributed database over a large number (pos-
sibly millions) of peers that support simple indexing and querying. The information
stored in our database will consist of (key, value) pairs. For example, the keys could be
social security numbers and the values could be the corresponding human names; in this
case, an example key-value pair is (156-45-7081, Johnny Wu). Or the keys could be con-
tent names (e.g., names of movies, albums, and software), and the values could be IP
addresses at which the content is stored; in this case, an example key-value pair is (Led
Zeppelin 1V, 203.17.123.38). Peers query our database by supplying the key: If there are
(key, value) pairs in the database that match the key, the database returns the matching
pairs to the querying peer. So, for example, if the database stores social security numbers
and their corresponding human names, a peer can query a specific social security num-
ber, and the database returns the name of the human who has that social security num-
ber. Peers also will be able to insert (key, value) pairs into our database.

153

154

CHAPTER 2

* APPLICATION LAYER

Building such a database is straightforward with a client-server architecture for
which all the (key, value) pairs are stored in one central server. This centralized
approach was also taken in early P2P systems such as Napster. But the problem is
significantly more challenging and interesting in a distributed system consisting of
millions of connected peers with no central authority. In a P2P system, we want to
distribute the (key, value) pairs across all the peers, so that each peer only holds a
small subset of the totality of the (key, value) pairs. One naive approach to building
such a P2P database is to (1) randomly scatter the (key, value) pairs across the peers
and (2) have each peer maintain a list of the IP addresses of all participating peers.
In this manner, the querying peer can send a query to all other peers, and the peers
containing (key, value) pairs that match the key can respond with their matching
pairs. Such an approach is completely unscalable, of course, as it would require each
peer to track all other peers (possibly millions) and, even worse, have each query
sent to all peers.

We now describe an elegant approach to designing a P2P database. To this end,
let’s first assign an identifier to each peer, where each identifier is an integer in the
range [0, 2" — 1] for some fixed n. Note that each such identifier can be expressed
by an n-bit representation. Let’s also require each key to be an integer in the same
range. The astute reader may have observed that the example keys described a
little earlier (social security numbers and content names) are not integers. To create
integers out of these keys, we will use a hash function that maps each key (e.g.,
social security number) to an integer in the range [0, 2" — 1]. A hash function is a
many-to-one function for which two different inputs can have the same output
(same integer), but the likelihood of the having the same output is extremely small.
(Readers who are unfamiliar with hash functions may want to visit Chapter 7, in
which hash functions are discussed in some detail.) The hash function is assumed
to be publicly available to all peers in the system. Henceforth, when we refer to the
“key,” we are referring to the hash of the original key. So, for example, if the origi-
nal key is “Led Zeppelin IV,” the key will be the integer that equals the hash of
“Led Zeppelin IV.” Also, since we are using hashes of keys, rather than the keys
themselves, we will henceforth refer to the distributed database as a Distributed
Hash Table (DHT).

Let’s now consider the problem of storing the (key, value) pairs in the DHT.
The central issue here is defining a rule for assigning keys to peers. Given that each
peer has an integer identifier and that each key is also an integer in the same range,
a natural approach is to assign each (key, value) pair to the peer whose identifier is
the closest to the key. To implement such a scheme, we’ll need to define what is
meant by “closest,” for which many conventions are possible. For convenience, let’s
define the closest peer as the immediate successor of the key. To gain some insight
here, let’s take a look at a specific example. Suppose n = 4 so that all the peer and key
identifiers are in the range [0, 15]. Further suppose that there are eight peers in the
system with identifiers 1, 3, 4, 5, 8, 10, 12, and 15. Finally, suppose we want to store

2.6« PEER-TO-PEER APPLICATIONS

the key-value pair (11, Johnny Wu) in one of the eight peers. But in which peer?
Using our closest convention, since peer 12 is the immediate successor for key 11,
we therefore store the pair (11, Johnny Wu) in the peer 12. [To complete our defini-
tion of closest, if the key is exactly equal to one of the peer identifiers, we store the
(key-value) pair in that matching peer; and if the key is larger than all the peer iden-
tifiers, we use a modulo-2" convention, storing the (key-value) pair in the peer with
the smallest identifier.]

Now suppose a peer, Alice, wants to insert a (key, value) pair into the DHT.
Conceptually, this is straightforward: She first determines the peer whose identifier
is closest to the key; she then sends a message to that peer, instructing it to store the
(key, value) pair. But how does Alice determine the peer that is closest to the key? If
Alice were to keep track of all the peers in the system (peer IDs and corresponding
IP addresses), she could locally determine the closest peer. But such an approach
requires each peer to keep track of all other peers in the DHT—which is completely
impractical for a large-scale system with millions of peers.

Circular DHT

To address this problem of scale, let’s now consider organizing the peers into a
circle. In this circular arrangement, each peer only keeps track of its immediate
successor (modulo 2"). An example of such a circle is shown in Figure 2.27(a). In
this example, n is again 4 and there are the same eight peers from the previous

Who is
responsible 1

.\for key 112
3
15

4
12
5
10

Figure 2.27 ¢ (a) A circular DHT. Peer 3 wants to determine who is
responsible for key 11. (b) A circular DHT with shortcuts.

155

156

CHAPTER 2

* APPLICATION LAYER

example. Each peer is only aware of its immediate successor; for example, peer 5
knows the IP address and identifier for peer § but does not necessarily know any-
thing about any other peers that may be in the DHT. This circular arrangement of
the peers is a special case of an overlay network. In an overlay network, the peers
form an abstract logical network which resides above the “underlay” computer net-
work consisting of physical links, routers, and hosts. The links in an overlay
network are not physical links, but are simply virtual liaisons between pairs of
peers. In the overlay in Figure 2.27(a), there are eight peers and eight overlay links;
in the overlay in Figure 2.27(b) there are eight peers and 16 overlay links. A single
overlay link typically uses many physical links and physical routers in the underlay
network.

Using the circular overlay in Figure 2.27(a), now suppose that peer 3 wants to
determine which peer in the DHT is responsible for key 11 [either for inserting or
querying for a (key-value) pair]. Using the circular overlay, the origin peer (peer 3)
creates a message saying “Who is responsible for key 11?” and sends this message
to its successor, peer 4. Whenever a peer receives such a message, because it knows
the identifier of its successor, it can determine whether it is responsible (that is, clos-
est to) the key in question. If a peer is not responsible for the key, it simply sends
the message to its successor. So, for example, when peer 4 receives the message ask-
ing about key 11, it determines that it is not responsible for the key (because its suc-
cessor is closer to the key), so it just passes the message to its own successor,
namely, peer 5. This process continues until the message arrives at peer 12, who
determines that it is the closest peer to key 11. At this point, peer 12 can send a mes-
sage back to the origin, peer 3, indicating that it is responsible for key 11.

The circular DHT provides a very elegant solution for reducing the amount of
overlay information each peer must manage. In particular, each peer is only aware
of two peers, its immediate successor and its immediate predecessor. (By default,
the peer is aware of its predecessor, since the predecessor is sending it messages.)
But this solution introduces yet a new problem. Although each peer is only aware of
two neighboring peers, to find the node responsible for a key (in the worst-case), all
N nodes in the DHT will have to forward a message around the circle; N/2 messages
are sent on average.

Thus, in designing a DHT, there is tradeoff between the number of neighbors
each peer has to track and the number of messages that the DHT needs to send to
resolve a single query. On one hand, if each peer tracks all other peers (mesh over-
lay), then only one message is sent per query, but each peer has to keep track of N
peers. On the other hand, with a circular DHT, each peer is only aware of two peers,
but N/2 messages are sent on average for each query. Fortunately, we can refine our
designs of DHTs so that the number of neighbors per peer as well as the number of
messages per query is kept to an acceptable size. One such refinement is to use the
circular overlay as a foundation, but add “shortcuts” so that each peer not only keeps
track of its immediate successor, but also of a relatively small number of shortcut
peers scattered about the circle. An example of such a circular DHT with some

2.6« PEER-TO-PEER APPLICATIONS

shortcuts is shown in Figure 2.27(b). Shortcuts are used to expedite the routing of
query messages. Specifically, when a peer receives a message that is querying for a
key, it forwards the message to the neighbor (successor neighbor or one of the short-
cut neighbors) which is the closet to the key. Thus, in Figure 2.27(b), when peer 4
receives the message asking about key 11, it determines that the closet peer to the
key (among its neighbors) is its shortcut neighbor 10 and then forwards the message
directly to peer 10. Clearly, shortcuts can significantly reduce the number of mes-
sages used to process a query.

The next natural question is “How many shortcut neighbors should each peer
have, and which peers should be these shortcut neighbors? This question has
received significant attention in the research community [Stoica 2001; Rowstron
2001; Ratnasamy 2001; Zhao 2004; Maymounkov 2002; Garces-Erce 2003]. Impor-
tantly, it has been shown that the DHT can be designed so that both the number of
neighbors per peer as well as the number of messages per query is O(log N), where
N is the number of peers. Such designs strike a satisfactory compromise between the
extreme solutions of using mesh and circular overlay topologies.

Peer Churn

In P2P systems, a peer can come or go without warning. Thus, when designing a
DHT, we also must be concerned about maintaining the DHT overlay in the pres-
ence of such peer churn. To get a big-picture understanding of how this could be
accomplished, let’s once again consider the circular DHT in Figure 2.27(a). To han-
dle peer churn, we will now require each peer to track (that is, know the IP address
of) its first and second successors; for example, peer 4 now tracks both peer 5 and
peer 8. We also require each peer to periodically verify that its two successors are
alive (for example, by periodically sending ping messages to them and asking for
responses). Let’s now consider how the DHT is maintained when a peer abruptly
leaves. For example, suppose peer 5 in Figure 2.27(a) abruptly leaves. In this case,
the two peers preceding the departed peer (4 and 3) learn that 5 has departed, since
it no longer responds to ping messages. Peers 4 and 3 thus need to update their suc-
cessor state information. Let’s consider how peer 4 updates its state:

1. Peer 4 replaces its first successor (peer 5) with its second successor (peer 8).
2. Peer 4 then asks its new first successor (peer 8) for the identifier and IP address of
its immediate successor (peer 10). Peer 4 then makes peer 10 its second successor.

In the homework problems, you will be asked to determine how peer 3 updates its
overlay routing information.

Having briefly addressed what has to be done when a peer leaves, let’s now
consider what happens when a peer wants to join the DHT. Let’s say a peer with
identifier 13 wants to join the DHT, and at the time of joining, it only knows about
peer 1’s existence in the DHT. Peer 13 would first send peer 1 a message, saying

157

158

CHAPTER 2

* APPLICATION LAYER

“what will be 13’s predecessor and successor?” This message gets forwarded
through the DHT until it reaches peer 12, who realizes that it will be 13’s predeces-
sor and that its current successor, peer 15, will become 13’s successor. Next, peer 12
sends this predecessor and successor information to peer 13. Peer 13 can now join
the DHT by making peer 15 its successor and by notifying peer 12 that it should
change its immediate successor to 13.

DHTs have been finding widespread use in practice. For example, BitTorrent
uses the Kademlia DHT to create a distributed tracker. In the BitTorrent, the key is
the torrent identifier and the value is the IP addresses of all the peers currently par-
ticipating in the torrent [Falkner 2007, Neglia 2007]. In this manner, by querying
the DHT with a torrent identifier, a newly arriving BitTorrent peer can determine the
peer that is responsible for the identifier (that is, for tracking the peers in the tor-
rent). After having found that peer, the arriving peer can query it for a list of other
peers in the torrent. DHTSs are also used extensively in the eMule file-sharing sys-
tem for locating content in peers [Liang 2006].

2.6.3 Case Study: P2P Internet Telephony with Skype

Skype is an immensely popular P2P application, often with seven or eight million
users connected to it at any one time. In addition to providing PC-to-PC Internet
telephony service, Skype offers PC-to-phone telephony service, phone-to-PC
telephony service, and PC-to-PC video conferencing service. Founded by the same
individuals who created FastTrack and Kazaa, Skype was acquired by eBay in 2005
for $2.6 billion.

Skype uses P2P techniques in a number of innovative ways, nicely illustrating
how P2P can be used in applications that go beyond content distribution and file
sharing. As with instant messaging, PC-to-PC Internet telephony is inherently P2P
since, at the heart of the application, pairs of users (i.e., peers) communicate with
each other in real time. But Skype also employs P2P techniques for two other impor-
tant functions, namely, for user location and for NAT traversal.

Not only are the Skype protocols proprietary, but all of Skype’s packet trans-
missions (voice and control packets) are encrypted. Nevertheless, from the Skype
Web site and a number of measurement studies, researchers have learned how Skype
generally works [Baset 2006; Guha 2006; Chen 2006; Suh 2006; Ren 2006]. As
with FastTrack, the nodes in Skype are organized into a hierarchical overlay net-
work, with each peer classified as a super peer or an ordinary peer. Skype includes
an index that maps Skype usernames to current IP addresses (and port numbers).
This index is distributed over the super peers. When Alice wants to call Bob, her
Skype client searches the distributed index to determine Bob’s current IP address.
Because the Skype protocol is proprietary, it is currently not clear how the index
mappings are organized across the super peers, although some form of DHT organi-
zation is very possible.

2.6« PEER-TO-PEER APPLICATIONS

P2P techniques are also used in Skype relays, which are useful for establishing
calls between hosts in home networks. Many home network configurations provide
access to the Internet through a router (typically a wireless router). These routers are
actually more than routers, and typically include a so-called Network Address Trans-
lator (NAT). We’ll study NATs in Chapter 4. For now, all we need to know is that a
NAT prevents a host from outside the home network from initiating a connection to a
host within the home network. If both Skype callers have NATSs, then there is a
problem—neither can accept a call initiated by the other, making a call seemingly
impossible. The clever use of super peers and relays nicely solves this problem.
Suppose that when Alice signs in, she is assigned a non-NATed super peer. Alice can
initiate a session to her super peer since her NAT only disallows sessions initiated
from outside her home network. This allows Alice and her super peer to exchange
control messages over this session. The same happens for Bob when he signs in.
Now, when Alice wants to call Bob, she informs her super peer, who in turn informs
Bob’s super peer, who in turn informs Bob of Alice’s incoming call. If Bob accepts
the call, the two super peers select a third non-NATed super peer—the relay node—
whose job will be to relay data between Alice and Bob. Alice’s and Bob’s super
peers then instruct Alice and Bob respectively to initiate a session with the relay.
Alice then sends voice packets to the relay over the Alice-to-relay connection
(which was initiated by Alice), and the relay then forwards these packets over the
relay-to-Bob connection (which was initiated by Bob); packets from Bob to Alice
flow over these same two relay connections in reverse. And voila!—Bob and Alice
have an on-demand end-to-end connection even though neither can accept a session
originating from outside its LAN. The use of relays illustrates the increasingly
sophisticated design of P2P systems, where peers perform core system services for
others (index service and relaying being two examples) while at the same time
themselves using the end-user service (e.g., file download, IP telephony) being pro-
vided by the P2P system.

Skype has been a wildly successful Internet application, spreading to literally
tens of millions of users. The breathtakingly fast and widespread adoption of
Skype, as well as P2P file sharing, the Web, and instant messaging before them, is
a telling testament to the wisdom of the overall architectural design of the Inter-
net, a design that could not have foreseen the rich and ever-expanding set of
Internet applications that would be developed over the next 30 years. The network
services offered to Internet applications—connectionless datagram transport
(UDP), connection-oriented reliable datagram transfer (TCP), the socket interface,
addressing, and naming (DNS), among others—have proven sufficient to allow
thousands of applications to be developed. Since these applications have all been
layered on top of the existing four lower layers of the Internet protocol stack, they
involve only the development of new client-server as peer-to-peer software for use
in end systems. This, in turn, has allowed these applications to be rapidly
deployed and adopted as well.

159

160

CHAPTER 2

e APPLICATION LAYER

2.7 Socket Programming with TCP

Now that we have looked at a number of important network applications, let’s
explore how network application programs are actually written. In this section we’ll
write application programs that use TCP; in the following section we’ll write pro-
grams that use UDP.

Recall from Section 2.1 that many network applications consist of a pair of pro-
grams—a client program and a server program—residing in two different end sys-
tems. When these two programs are executed, a client and a server process are
created, and these processes communicate with each other by reading from and writ-
ing to sockets. When creating a network application, the developer’s main task is to
write the code for both the client and server programs.

There are two sorts of network applications. One sort is an implementation of a
protocol standard defined in, for example, an RFC. For such an implementation, the
client and server programs must conform to the rules dictated by the RFC. For
example, the client program could be an implementation of the client side of the
FTP protocol, described in Section 2.3 and explicitly defined in RFC 959; similarly,
the server program could be an implementation of the FTP server protocol, also
explicitly defined in RFC 959. If one developer writes code for the client program
and an independent developer writes code for the server program, and both develop-
ers carefully follow the rules of the RFC, then the two programs will be able to
interoperate. Indeed, many of today’s network applications involve communication
between client and server programs that have been created by independent develop-
ers—for example, a Firefox browser communicating with an Apache Web server, or
an FTP client on a PC uploading a file to a Linux FTP server. When a client or server
program implements a protocol defined in an RFC, it should use the port number
associated with the protocol. (Port numbers were briefly discussed in Section 2.1.
They are covered in more detail in Chapter 3.)

The other sort of network application is a proprietary network application. In this
case the application-layer protocol used by the client and server programs do not
necessarily conform to any existing RFC. A single developer (or development team)
creates both the client and server programs, and the developer has complete control
over what goes in the code. But because the code does not implement a public-
domain protocol, other independent developers will not be able to develop code that
interoperates with the application. When developing a proprietary application, the
developer must be careful not to use one of the well-known port numbers defined in
the RFCs.

In this and the next section, we examine the key issues in developing a propri-
etary client-server application. During the development phase, one of the first deci-
sions the developer must make is whether the application is to run over TCP or over
UDP. Recall that TCP is connection oriented and provides a reliable byte-stream
channel through which data flows between two end systems. UDP is connectionless

2.7 + SOCKET PROGRAMMING WITH TCP

and sends independent packets of data from one end system to the other, without any
guarantees about delivery.

In this section we develop a simple client application that runs over TCP; in the
next section, we develop a simple client application that runs over UDP. We present
these simple TCP and UDP applications in Java. We could have written the code in
C or C++, but we opted for Java mostly because the applications are more neatly
and cleanly written in Java. With Java there are fewer lines of code, and each line
can be explained to the novice programmer without much difficulty. But there is no
need to be frightened if you are not familiar with Java. You should be able to follow
the code if you have experience programming in another language.

For readers who are interested in client-server programming in C, there are several
good references available [Donahoo 2001; Stevens 1997; Frost 1994; Kurose 1996].

2.7.1 Socket Programming with TCP

Recall from Section 2.1 that processes running on different machines communicate
with each other by sending messages into sockets. We said that each process was
analogous to a house and the process’s socket is analogous to a door. As shown in
Figure 2.28, the socket is the door between the application process and TCP. The
application developer has control of everything on the application-layer side of the
socket; however, it has little control of the transport-layer side. (At the very most,
the application developer has the ability to fix a few TCP parameters, such as maxi-
mum buffer size and maximum segment size.)

Host or Host or
server server
‘ Q
= —
Controlled
by application Process Process
developer 4 4
Socket Socket
Controlleq TCP with TP with
by operating buffers, < S buffors,
SyStem variables Internet variables

Figure 2.28 ¢ Processes communicating through TCP sockets

Controlled

by application

developer

Controlled
by operating
system

161

162

CHAPTER 2

e APPLICATION LAYER

Now let’s take a closer look at the interaction of the client and server programs.
The client has the job of initiating contact with the server. In order for the server to
be able to react to the client’s initial contact, the server has to be ready. This implies
two things. First, the server program cannot be dormant—that is, it must be running
as a process before the client attempts to initiate contact. Second, the server program
must have some sort of door—more precisely, a socket—that welcomes some initial
contact from a client process running on an arbitrary host. Using our house/door
analogy for a process/socket, we will sometimes refer to the client’s initial contact
as “knocking on the welcoming door.”

With the server process running, the client process can initiate a TCP connec-
tion to the server. This is done in the client program by creating a socket. When the
client creates its socket, it specifies the address of the server process, namely, the IP
address of the server host and the port number of the server process. Once the socket
has been created in the client program, TCP in the client initiates a three-way hand-
shake and establishes a TCP connection with the server. The three-way handshake,
which takes place at the transport layer, is completely transparent to the client and
server programs.

During the three-way handshake, the client process knocks on the welcoming
door of the server process. When the server “hears” the knocking, it creates a new
door—more precisely, a new socket—that is dedicated to that particular client. In
our example below, the welcoming door is a ServerSocket object that we call
the welcomeSocket. When a client knocks on this door, the program invokes
welcomeSocket’s accept () method, which creates a new door for the client.
At the end of the handshaking phase, a TCP connection exists between the client’s
socket and the server’s new socket. Henceforth, we refer to the server’s new, dedi-
cated socket as the server’s connection socket.

From the application’s perspective, the TCP connection is a direct virtual pipe
between the client’s socket and the server’s connection socket. The client process
can send arbitrary bytes into its socket, and TCP guarantees that the server process
will receive (through the connection socket) each byte in the order sent. TCP thus
provides a reliable byte-stream service between the client and server processes.
Furthermore, just as people can go in and out the same door, the client process not
only sends bytes into but also receives bytes from its socket; similarly, the server
process not only receives bytes from but also sends bytes into its connection socket.
This is illustrated in Figure 2.29. Because sockets play a central role in client/server
applications, client/server application development is also referred to as socket pro-
gramming.

Before providing our example client-server application, it is useful to discuss
the notion of a stream. A stream is a sequence of characters that flow into or out of
a process. Each stream is either an input stream for the process or an output
stream for the process. If the stream is an input stream, then it is attached to some
input source for the process, such as standard input (the keyboard) or a socket into
which data flows from the Internet. If the stream is an output stream, then it is

2.7 + SOCKET PROGRAMMING WITH TCP

B

Client process Server process

Client Connection
socket socket

Figure 2.29 ¢ Clientsocket, welcoming socket, and connection socket

attached to some output source for the process, such as standard output (the moni-
tor) or a socket out of which data flows into the Internet.

2.7.2 An Example Client-Server Application in Java

We use the following simple client-server application to demonstrate socket pro-
gramming for both TCP and UDP:

1.

bl

A client reads a line from its standard input (keyboard) and sends the line out
its socket to the server.

The server reads a line from its connection socket.

The server converts the line to uppercase.

The server sends the modified line out its connection socket to the client.

The client reads the modified line from its socket and prints the line on its
standard output (monitor).

Figure 2.30 illustrates the main socket-related activity of the client and server.

Next we provide the client-server program pair for a TCP implementation of the

application. We provide a detailed, line-by-line analysis after each program. The

163

164 CHAPTER 2 e APPLICATION LAYER

Server Client
(Running on hostid)

Create socket port=x,
for incoming request:

welcomeSocket =
ServerSocket ()

Wait for incoming
connection request

connectionSocket = X i clientSocket =
welcomeSocket.accept () Socket ()

Send request using
Read request from / clientSocket

connectionSocket

|

Write reply to

connectionSocket \ Read reply from

TCP

. Create socket connected to
connection setup

hostid, port=x

clientSocket
Close Close
connectionSocket clientSocket

Figure 2.30 ¢ The clientserver application, using connection-oriented
transport services

client program is called TCPClient. java, and the server program is called
TCPServer. java. In order to emphasize the key issues, we intentionally provide
code that is to the point but not bulletproof. “Good code” would certainly have a few
more auxiliary lines.

Once the two programs are compiled on their respective hosts, the server pro-
gram is first executed at the server host, which creates a server process at the server
host. As discussed above, the server process waits to be contacted by a client process.

2.7 + SOCKET PROGRAMMING WITH TCP

In this example application, when the client program is executed, a process is cre-
ated at the client, and this process immediately contacts the server and establishes a
TCP connection with it. The user at the client may then use the application to send a
line and then receive a capitalized version of the line.

TCPClient.java

Here is the code for the client side of the application:

import java.io.*;
import java.net.*;
class TCPClient {
public static void main(String argv[]) throws Exception
{
String sentence;
String modifiedSentence;
BufferedReader inFromUser = new BufferedReader (
new InputStreamReader (System.in));
Socket clientSocket = new Socket(“hostname”, 6789);
DataOutputStream outToServer = new DataOutputStream(
clientSocket.getOutputStream());
BufferedReader inFromServer =
new BufferedReader (new InputStreamReader (
clientSocket.getInputStream()));
sentence = inFromUser.readLine();
outToServer.writeBytes(sentence + ‘\n’);
modifiedSentence = inFromServer.readLine();
System.out.println(“FROM SERVER: “ +
modifiedSentence);
clientSocket.close();

The program TCPClient creates three streams and one socket, as shown in Figure
2.31. The socket is called clientSocket. The stream inFromUser is an input
stream to the program,; it is attached to the standard input (that is, the keyboard).
When the user types characters on the keyboard, the characters flow into the stream
inFromUser. The stream inFromServer is another input stream to the pro-
gram; it is attached to the socket. Characters that arrive from the network flow into
the stream inFromServer. Finally, the stream outToServer is an output
stream from the program,; it is also attached to the socket. Characters that the client
sends to the network flow into the stream outToServer.

165

166 CHAPTER 2 e APPLICATION LAYER

— B

Keyboard Monitor

v
M
]
3
Input §
stream— ~
o
-
Process _L 1
[
¢ g
Output 5 8 —Input
stream—| & 21| stream
B g
= I
3 d
0 s
clientSocket
1—TCP socket
To From
transport transport
layer layer

Figure 2.31 ¢ TCPclient has three streams through which characters flow

Let’s now take a look at the various lines in the code.

import java.io.*;
import java.net.*;

java.io and java.net are Java packages. The java.io package contains
classes for input and output streams. In particular, the java.io package contains
the BufferedReader and DataOutputStream classes, classes that the
program uses to create the three streams previously illustrated. The java.net
package provides classes for network support. In particular, it contains the Socket
and ServerSocket classes. The clientSocket object of this program is
derived from the Socket class.

class TCPClient {
public static void main(String argv[]) throws Exception

2.7+ SOCKET PROGRAMMING WITH TCP

So far, what we’ve seen is standard stuff that you see at the beginning of most Java
code. The third line is the beginning of a class definition block. The keyword class
begins the class definition for the class named TCPClient. A class contains vari-
ables and methods. The variables and methods of the class are embraced by the curly
brackets that begin and end the class definition block. The class TCPClient has no
class variables and exactly one method, the main () method. Methods are similar to
the functions or procedures in languages such as C; the main () method in the Java
language is similar to the main () function in C and C++. When the Java interpreter
executes an application (by being invoked upon the application’s controlling class), it
starts by calling the class’s main () method. The main () method then calls all the
other methods required to run the application. For this introduction to socket pro-
gramming in Java, you may ignore the keywords public, static, void, main,
and throws Exceptions (although you must include them in the code).

String sentence;
String modifiedSentence;

These above two lines declare objects of type String. The object sentence is
the string typed by the user and sent to the server. The object modifiedSen-
tence is the string obtained from the server and sent to the user’s standard output.

BufferedReader inFromUser = new BufferedReader (
new InputStreamReader (System.in));

The above line creates the stream object inFromUser of type Buffered
Reader. The input stream is initialized with System. in, which attaches the stream
to the standard input. The command allows the client to read text from its keyboard.

Socket clientSocket = new Socket(“”hostname”, 6789);

The above line creates the object clientSocket of type Socket. It also ini-
tiates the TCP connection between client and server. The string “host-name” must
be replaced with the host name of the server (for example, “apple.poly.edu”).
Before the TCP connection is actually initiated, the client performs a DNS lookup on
the host name to obtain the host’s IP address. The number 6789 is the port number.
You can use a different port number, but you must make sure that you use the same
port number at the server side of the application. As discussed earlier, the host’s IP
address along with the application’s port number identifies the server process.

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());
BufferedReader inFromServer =
new BufferedReader (new inputStreamReader (
clientSocket.getInputStream()));

167

168

CHAPTER 2

e APPLICATION LAYER

The above two lines create stream objects that are attached to the socket. The out-
ToServer stream provides the process output to the socket. The inFromServer
stream provides the process input from the socket (see Figure 2.31).

sentence = inFromUser.readLine();

This line places a line typed by the user into the string sentence. The string
sentence continues to gather characters until the user ends the line by typing a
carriage return. The line passes from standard input through the stream inFrom-
User into the string sentence.

outToServer.writeBytes(sentence + ‘\n’);

The above line sends the string sentence augmented with a carriage return into
the outToServer stream. The augmented sentence flows through the client’s
socket and into the TCP pipe. The client then waits to receive characters from the
server.

modifiedSentence = inFromServer.readLine();

When characters arrive from the server, they flow through the stream inFrom-
Server and get placed into the string modifiedSentence. Characters continue
to accumulate in modifiedSentence until the line ends with a carriage return
character.

System.out.println(“FROM SERVER “ + modifiedSentence);

The above line prints to the monitor the string modifiedSentence returned by
the server.

clientSocket.close();

This last line closes the socket and, hence, closes the TCP connection between the
client and the server. It causes TCP in the client to send a TCP message to TCP in
the server (see Section 3.5).

TCPServer.java
Now let’s take a look at the server program.
import java.io.*;

import java.net.*;
class TCPServer {

2.7+ SOCKET PROGRAMMING WITH TCP

public static void main(String argv[]) throws Exception
{
String clientSentence;
String capitalizedSentence;
ServerSocket welcomeSocket = new ServerSocket
(6789);
while(true) {
Socket connectionSocket
accept();
BufferedReader inFromClient =
new BufferedReader (new InputStreamReader (
connectionSocket.getInputStream()));
DataOutputStream outToClient =
new DataOutputStream(
connectionSocket.getOutputStream());
clientSentence = inFromClient.readLine();
capitalizedSentence =
clientSentence.toUpperCase() + ‘\n’;
outToClient.writeBytes(capitalizedSentence);

welcomeSocket.

TCPServer has many similarities with TCPClient. Let’s now take a look at the
lines in TCPServer. java. We will not comment on the lines that are identical or
similar to commands in TCPClient. java.

The first line in TCPServer is substantially different from what we saw in
TCPClient:

ServerSocket welcomeSocket = new ServerSocket(6789);

This line creates the object welcomeSocket, which is of type ServerSocket
The welcomeSocket is a sort of door that listens for a knock from some client.
The welcomeSocket listens on port number 6789. The next line is

Socket connectionSocket = welcomeSocket.accept();

This line creates a new socket, called connectionSocket, when some client
knocks on welcomeSocket. This socket also has port number 6789. (We’ll
explain why both sockets have the same port number in Chapter 3.) TCP then estab-
lishes a direct virtual pipe between clientSocket at the client and connec-
tionSocket at the server. The client and server can then send bytes to each other

169

170

CHAPTER 2

e APPLICATION LAYER

over the pipe, and all bytes sent arrive at the other side in order. With connec-
tionSocket established, the server can continue to listen for requests from other
clients for the application using welcomeSocket. (This version of the program
doesn’t actually listen for more connection requests, but it can be modified with
threads to do so.) The program then creates several stream objects, analogous to the
stream objects created in clientSocket. Now consider

capitalizedSentence = clientSentence.toUpperCase() + ‘\n’;

This command is the heart of the application. It takes the line sent by the client, cap-
italizes it, and adds a carriage return. It uses the method toUpperCase (). All the
other commands in the program are peripheral; they are used for communication
with the client.

To test the program pair, you install and compile TCPClient. java in one
host and TCPServer. java in another host. Be sure to include the proper host-
name of the server in TCPClient. java. You next execute TCPServer.class,
the compiled server program, in the server. This creates a process in the server that
idles until it is contacted by some client. Then you execute TCPClient.class,
the compiled client program, in the client. This creates a process in the client and
establishes a TCP connection between the client and server processes. Finally, to use
the application, you type a sentence followed by a carriage return.

To develop your own client-server application, you can begin by slightly modi-
fying the programs. For example, instead of converting all the letters to uppercase,
the server can count the number of times the letter s appears and return this number.

2.8 Socket Programming with UDP

We learned in the previous section that when two processes communicate over TCP,
it is as if there were a pipe between the two processes. This pipe remains in place
until one of the two processes closes it. When one of the processes wants to send
some bytes to the other process, it simply inserts the bytes into the pipe. The send-
ing process does not have to attach a destination address to the bytes because the
pipe is logically connected to the destination. Furthermore, the pipe provides a reli-
able byte-stream channel—the sequence of bytes received by the receiving process
is exactly the sequence of bytes that the sender inserted into the pipe.

UDP also allows two (or more) processes running on different hosts to commu-
nicate. However, UDP differs from TCP in many fundamental ways. First, UDP is a
connectionless service—there isn’t an initial handshaking phase during which a pipe
is established between the two processes. Because UDP doesn’t have a pipe, when a
process wants to send a batch of bytes to another process, the sending process must

2.8 « SOCKET PROGRAMMING WITH UDP

attach the destination process’s address to the batch of bytes. And this must be done
for each batch of bytes the sending process sends. As an analogy, consider a group of
20 persons who take five taxis to a common destination; as the people enter the taxis,
each taxi driver must separately be informed of the destination. Thus, UDP is similar
to a taxi service. The destination address is a tuple consisting of the IP address of the
destination host and the port number of the destination process. We refer to the batch
of information bytes along with the IP destination address and port number as the
“packet.” UDP provides an unreliable message-oriented service model, in that it
makes a best effort to deliver the batch of bytes to the destination. It is message-
oriented in that batches are bytes that are sent in a single zero operation at the send-
ing side, will be delivered as a batch at the receiving side; this contrasts with TCP’s
byte-stream semantics. UDP service is best-effort in that UDP makes no guarantee
that the batch of bytes will indeed be delivered. The UDP service thus contrasts
sharply (in several respects) with TCP’s reliable byte-stream service model.

After having created a packet, the sending process pushes the packet into the
network through a socket. Continuing with our taxi analogy, at the other side of the
sending socket, there is a taxi waiting for the packet. The taxi then drives the packet
in the direction of the packet’s destination address. However, the taxi does not guar-
antee that it will eventually get the packet to its ultimate destination—the taxi could
break down or suffer some other unforeseen problem. In other terms, UDP provides
an unreliable transport service to its communication processes—it makes no
guarantees that a packet will reach its ultimate destination.

In this section we illustrate socket programming by redeveloping the same
application of the previous section, but this time over UDP. We’ll see that the code
for UDP is different from the TCP code in many important ways. In particular,
there is (1) no initial handshaking between the two processes and therefore no
need for a welcoming socket, (2) no streams are attached to the sockets, (3) the
sending hosts create packets by attaching the IP destination address and port num-
ber to each batch of bytes it sends, and (4) the receiving process must unravel each
received packet to obtain the packet’s information bytes. Recall once again our
simple application:

1. A client reads a line from its standard input (keyboard) and sends the line out
its socket to the server.

The server reads a line from its socket.

The server converts the line to uppercase.

The server sends the modified line out its socket to the client.

The client reads the modified line from its socket and prints the line on its stan-
dard output (monitor).

bl el

Figure 2.32 highlights the main socket-related activity of the client and server
that communicate over a connectionless (UDP) transport service.

171

172

CHAPTER 2 e APPLICATION LAYER

Server Client
(Running on hostid)

Create socket port=x,
for incoming request:

serverSocket =
DatagramSocket ()

l Create address

h id, =
Read request from / (hostid, port=x)

send datagram request using
clientSocket

Create socket

clientSocket =
DatagramSocket ()

serverSocket

|

Write reply to
serverSocket

specifying client host \’ Read reply from

address, port number

clientSocket

|

Close

clientSocket

Figure 2.32 ¢ The client-server application, using connectionless transport
services

UDPClient.java

Here is the code for the client side of the application:

import java.io.*;
import java.net.*;
class UDPClient {
public static void main(String args[]) throws Exception
{
BufferedReader inFromUser =
new BufferedReader (new InputStreamReader
(System.in));
DatagramSocket clientSocket = new DatagramSocket();
InetAddress IPAddress =
InetAddress.getByName (“hostname”);
byte[] sendData = new byte[1024];

2.8 « SOCKET PROGRAMMING WITH UDP 173

byte[] receiveData = new byte[1024];
String sentence = inFromUser.readLine();
sendData = sentence.getBytes();
DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length,
IPAddress, 9876);
clientSocket.send(sendPacket);
DatagramPacket receivePacket =
new DatagramPacket(receiveData,
receiveData.length);
clientSocket.receive(receivePacket);
String modifiedSentence =
new String(receivePacket.getData());
System.out.println(“FROM SERVER:” +
modifiedSentence);
clientSocket.close();

The program UDPClient.java constructs one stream and one socket, as
shown in Figure 2.33. The socket is called clientSocket, and it is of type
DatagramSocket. Note that UDP uses a different kind of socket than TCP at
the client. In particular, with UDP our client uses a DatagramSocket, whereas
with TCP our client used a Socket. The stream inFromUser is an input stream
to the program,; it is attached to the standard input, that is, to the keyboard. We had
an equivalent stream in our TCP version of the program. When the user types
characters on the keyboard, the characters flow into the stream inFromUser.
But in contrast with TCP, there are no streams (input or output) attached to the
socket. Instead of feeding bytes to the stream attached to a Socket object, UDP
will push individual packets through the DatagramSocket object.

Let’s now take a look at the lines in the code that differ significantly from
TCPClient. java.

DatagramSocket clientSocket = new DatagramSocket();

This line creates the object clientSocket of type DatagramSocket. In contrast
with TCPClient. java, this line does not initiate a TCP connection. In particular,
the client host does not contact the server host upon execution of this line. For this rea-
son, the constructor DatagramSocket () does not take the server host name or port
number as arguments. Using our door-pipe analogy, the execution of the above line cre-
ates a door for the client process but does not create a pipe between the two processes.

InetAddress IPAddress = InetAddress.getByName(“hostname”);

174

CHAPTER 2

e APPLICATION LAYER

- B

Keyboard Monitor

v I
[
[0}
3
£
Input é
stream —
-H
Process 4
s
[0}
is} A
[0} [}
UDP “ o [—UDP
datagram | & 2| datagram
packet — & ‘s | packet
:
I
clientSocket
+— UDP socket
|)
To From
transport transport
layer layer

Figure 2.33 ¢ UDPClient has one stream; the socket accepts packets from
the process and delivers packets to the process.

In order to send bytes to a destination process, we need the address of the process. Part
of this address is the IP address of the destination host. The above line invokes a DNS
lookup that translates the hostname (in this example, supplied in the code by the devel-
oper) to an IP address. DNS was also invoked by the TCP version of the client, although
it was done there implicitly rather than explicitly. The method getByName () takes
as an argument the hostname of the server and returns the IP address of this same
server. It places this address in the object IPAddress of type InetAddress.

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

The byte arrays sendData and receiveData will hold the data the client sends
and receives, respectively.

sendData = sentence.getBytes();

2.8 « SOCKET PROGRAMMING WITH UDP

The above line essentially performs a type conversion. It takes the string
sentence and renames it as sendData, which is an array of bytes.

DatagramPacket sendPacket = new DatagramPacket(
sendData, sendData.length, IPAddress, 9876);

This line constructs the packet, sendPacket, which the client will pop into the
network through its socket. This packet includes that data that is contained in the
packet, sendData, the length of this data, the IP address of the server, and the port
number of the application (which we have set to 9876). Note that sendPacket is
of type DatagramPacket.

clientSocket.send(sendPacket);

In the above line, the method send () of the object clientSocket takes the packet
just constructed and pops it into the network through clientSocket. Once again,
note that UDP sends the line of characters in a manner very different from TCP. TCP
simply inserted the string of characters into a stream, which had a logical direct con-
nection to the server; UDP creates a packet that includes the address of the server. After
sending the packet, the client then waits to receive a packet from the server.

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

In the above line, while waiting for the packet from the server, the client creates a place-
holder for the packet, receivePacket, an object of type DatagramPacket.

clientSocket.receive(receivePacket);

The client idles until it receives a packet; when it does receive a packet, it puts the
packet in receivePacket.

String modifiedSentence =
new String(receivePacket.getData());

The above line extracts the data from receivePacket and performs a type con-
version, converting an array of bytes into the string modifiedSentence.

System.out.println(“FROM SERVER:” + modifiedSentence);

This line, which is also present in TCPClient, prints out the string modified-
Sentence at the client’s monitor.

clientSocket.close();

175

176 CHAPTER 2 e APPLICATION LAYER

This last line closes the socket. Because UDP is connectionless, this line does not
cause the client to send a transport-layer message to the server (in contrast with
TCPClient).

UDPServer.java
Let’s now take a look at the server side of the application:
import java.io.*;

import java.net.*;
class UDPServer {

public static void main(String args[]) throws Exception
{
DatagramSocket serverSocket = new

DatagramSocket (9876);
byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];
while(true)

{
DatagramPacket receivePacket =
new DatagramPacket (receiveData,
receiveData.length);
serverSocket.receive(receivePacket);
String sentence = new String(
receivePacket.getData());
InetAddress IPAddress =
receivePacket.getAddress|();
int port = receivePacket.getPort();
String capitalizedSentence =
sentence.toUpperCase();
sendData = capitalizedSentence.getBytes();
DatagramPacket sendPacket =
new DatagramPacket (sendData,
sendData.length, IPAddress, port);
serverSocket.send(sendPacket);

The program UDPServer. java constructs one socket, as shown in Figure 2.34.
The socket is called serverSocket. It is an object of type DatagramSocket
as was the socket in the client side of the application. Once again, no streams are
attached to the socket.

2.8 « SOCKET PROGRAMMING WITH UDP

toUpperCase ()
I} ?
t
Process
s
3 %
UDP —5 5 —UDP
datagram | & 2| datagram
packet 2 % | packet
[0} [0}
[0} [0}
g
v 4
serverSocket
1—UDP socket
3 port 9876
4
To From
transport transport
layer layer

Figure 2.34 ¢ uDPServer has no streams; the socket accepts packets from
the process and delivers packets to the process.

Let’s now take a look at the lines in the code that differ from TCPServer. java.
DatagramSocket serverSocket = new DatagramSocket(9876);

The above line constructs the DatagramSocket serverSocket at port 9876.
All data sent and received will pass through this socket. Because UDP is connec-
tionless, we do not have to create a new socket and continue to listen for new con-
nection requests, as done in TCPServer. java. If multiple clients access this
application, they will all send their packets into this single door, serverSocket.

String sentence = new String(receivePacket.getData());
InetAddress IPAddress = receivePacket.getAddress();
int port = receivePacket.getPort();

The above three lines unravel the packet that arrives from the client. The first of the
three lines extracts the data from the packet and places the data in the String
sentence; it has an analogous line in UDPClient. The second line extracts the
IP address; the third line extracts the client port number, which is chosen by the
client and is different from the server port number 9876. (We will discuss client port
numbers in some detail in the next chapter.) It is necessary for the server to obtain

177

178

CHAPTER 2

e APPLICATION LAYER

the address (IP address and port number) of the client, so that it can send the capital-
ized sentence back to the client.

That completes our analysis of the UDP program pair. To test the application,
you install and compile UDPClient. java in one host and UDPServer. java
in another host. (Be sure to include the proper hostname of the server in UDP
Client.java.) Then execute the two programs on their respective hosts.
Unlike with TCP, you can first execute the client side and then the server side.
This is because the client process does not attempt to initiate a connection with
the server when you execute the client program. Once you have executed the
client and server programs, you may use the application by typing a line at the
client.

2.9 Summary

In this chapter we’ve studied the conceptual and the implementation aspects of net-
work applications. We’ve learned about the ubiquitous client-server architecture
adopted by many Internet applications and seen its use in the HTTP, FTP, SMTP,
POP3, and DNS protocols. We’ve studied these important application-level proto-
cols, and their corresponding associated applications (the Web, file transfer, e-mail,
and DNS) in some detail. We’ve also learned about the increasingly prevalent P2P
architecture and how it is used in many applications. We’ve examined how the
socket API can be used to build network applications. We’ve walked through the use
of sockets for connection-oriented (TCP) and connectionless (UDP) end-to-end
transport services. The first step in our journey down the layered network architec-
ture is now complete!

At the very beginning of this book, in Section 1.1, we gave a rather vague, bare-
bones definition of a protocol: “the format and the order of messages exchanged
between two or more communicating entities, as well as the actions taken on the
transmission and/or receipt of a message or other event.” The material in this chap-
ter, and in particular our detailed study of the HTTP, FTP, SMTP, POP3, and DNS
protocols, has now added considerable substance to this definition. Protocols are a
key concept in networking; our study of application protocols has now given us the
opportunity to develop a more intuitive feel for what protocols are all about.

In Section 2.1 we described the service models that TCP and UDP offer to
applications that invoke them. We took an even closer look at these service models
when we developed simple applications that run over TCP and UDP in Sections 2.7
and 2.8. However, we have said little about how TCP and UDP provide these serv-
ice models. For example, we know that TCP provides a reliable data service, but we
haven’t said yet how it does so. In the next chapter we’ll take a careful look at not
only the what, but also the how and why of transport protocols.

HOMEWORK PROBLEMS AND QUESTIONS 179

Equipped with knowledge about Internet application structure and application-
level protocols, we’re now ready to head further down the protocol stack and exam-
ine the transport layer in Chapter 3.

m Homework Problems and Questions

Chapter 2 Review Questions
SECTION 2.1

R.1. List five nonproprietary Internet applications and the application-layer
protocols that they use.

R.2. What is the difference between network architecture and application
architecture?

R.3. For a communication session between a pair of processes, which process is
the client and which is the server?

R.4. For a P2P file-sharing application, do you agree with the statement, ‘“There is
no notion of client and server sides of a communication session”? Why or
why not?

R.5. What information is used by a process running on one host to identify a
process running on another host?

R.6. Suppose you wanted to do a transaction from a remote client to a server as
fast as possible. Would you use UDP or TCP? Why?

R.7. Referring to Figure 2.4, we see that none of the applications listed in Figure
2.4 requires both no data loss and timing. Can you conceive of an application
that requires no data loss and that is also highly time-sensitive?

R.8. List the four broad classes of services that a transport protocol can provide.
For each of the service classes, indicate if either UDP or TCP (or both) pro-
vides such a service.

R.9. Recall that TCP can be enhanced with SSL to provide process-to-process
security services, including encryption. Does SSL operate at the transport
layer or the application layer? If the application developer wants TCP to be
enhanced with SSL, what does the developer have to do?

SECTIONS 2.2-2.5
R.10. What is meant by a handshaking protocol?
R.11. Why do HTTP, FTP, SMTP, and POP3 run on top of TCP rather than on UDP?

R.12. Consider an e-commerce site that wants to keep a purchase record for each of
its customers. Describe how this can be done with cookies.

180

CHAPTER 2

e APPLICATION LAYER

R.13.

R.14.

R.15.

R.16.

R.17.

R.18.

R.19.

Describe how Web caching can reduce the delay in receiving a requested
object. Will Web caching reduce the delay for all objects requested by a user
or for only some of the objects? Why?

Telnet into a Web server and send a multiline request message. Include in the
request message the If-modified-since: header line to force a
response message with the 304 Not Modified status code.

Why is it said that FTP sends control information “out-of-band”?

Suppose Alice, with a Web-based e-mail account (such as Hotmail or gmail),
sends a message to Bob, who accesses his mail from his mail server using
POP3. Discuss how the message gets from Alice’s host to Bob’s host. Be sure
to list the series of application-layer protocols that are used to move the mes-
sage between the two hosts.

Print out the header of an e-mail message you have recently received. How
many Received: header lines are there? Analyze each of the header lines
in the message.

From a user’s perspective, what is the difference between the download-and-
delete mode and the download-and-keep mode in POP3?

Is it possible for an organization’s Web server and mail server to have exactly
the same alias for a hostname (for example, foo.com)? What would be the
type for the RR that contains the hostname of the mail server?

SECTION 2.6

R.20.

R.21

R.22.

R.23.

R.24.

R.25.

In BitTorrent, suppose Alice provides chunks to Bob throughout a 30-second
interval. Will Bob necessarily return the favor and provide chunks to Alice in
this same interval? Why or why not?

. Consider a new peer Alice that joins BitTorrent without possessing any

chunks. Without any chunks, she cannot become a top-four uploader for any
of the other peers, since she has nothing to upload. How then will Alice get
her first chunk?

What is an overlay network? Does it include routers? What are the edges in
the overlay network? How is the query-flooding overlay network created and
maintained?

In what way is instant messaging with a centralized index a hybrid of client-
server and P2P architectures?

Consider a DHT with a mesh overlay topology (that is, every peer tracks all
peers in the system). What are the advantages and disadvantages of such a
design? What are the advantages and disadvantages of a circular DHT (with
no shortcuts)?

Skype uses P2P techniques for two important functions. What are they?

R.26. List at least four different applications that are naturally suitable for P2P
architectures. (Hint: File distribution and instant messaging are two.)

SECTIONS 2.7-2.8

R.27. The UDP server described in Section 2.8 needed only one socket, whereas the
TCP server described in Section 2.7 needed two sockets. Why? If the TCP
server were to support # simultaneous connections, each from a different
client host, how many sockets would the TCP server need?

R.28. For the client-server application over TCP described in Section 2.7, why must
the server program be executed before the client program? For the client-
server application over UDP described in Section 2.8, why may the client
program be executed before the server program?

EE Problems

P1. True or false?

a. Auser requests a Web page that consists of some text and three images.
For this page, the client will send one request message and receive four
response messages.

b. Two distinct Web pages (for example, www.mit.edu/research.html
and www.mit.edu/students.html) can be sent over the same per-
sistent connection.

c. With nonpersistent connections between browser and origin server, it is pos-
sible for a single TCP segment to carry two distinct HTTP request messages.

d. The Date: header in the HTTP response message indicates when the
object in the response was last modified.

e. HTTP response messages never have an empty message body.

P2. Read RFC 959 for FTP. List all of the client commands that are supported by
the RFC.

P3. Consider an HTTP client that wants to retrieve a Web document at a given
URL. The IP address of the HTTP server is initially unknown. What transport
and application-layer protocols besides HTTP are needed in this scenario?

P4. Consider the following string of ASCII characters that were captured by
Wireshark when the browser sent an HTTP GET message (i.e., this is the actual
content of an HTTP GET message). The characters <cr><If> are carriage
return and line-feed characters (that is, the italized character string <cr> in
the text below represents the single carriage-return character that was con-
tained at that point in the HTTP header). Answer the following questions,
indicating where in the HTTP GET message below you find the answer.

181

www.mit.edu/research.html
www.mit.edu/students.html

182

CHAPTER 2

e APPLICATION LAYER

GET /cs453/index.html HTTP/1l.l<cr><lf>Host: gai
a.cs.umass.edu<cr><lf>User-Agent: Mozilla/5.0 (
Windows;U; Windows NT 5.1; en-US; rv:1.7.2) Gec
ko/20040804 Netscape/7.2 (ax) <cr><Ilf>Accept:ex

t/xml, application/xml, application/xhtml+xml, text
/html;g=0.9, text/plain;g=0.8,image/png,*/*;q=0.5
<cr><lf>Accept-Language: en-us,en;q=0.5<cr><If>Accept-
Encoding: zip,deflate<cr><Ilf>Accept-Charset: ISO
-8859-1,utf-8;9=0.7,*;9=0.7<cr><Ilf>Keep-Alive: 300<cr>
<lf>Connection:keep-alive<cr><I1f><cr><l1f>

What is the URL of the document requested by the browser?

What version of HTTP is the browser running?

Does the browser request a non-persistent or a persistent connection?
What is the IP address of the host on which the browser is running?

o a0 o

What type of browser initiates this message? Why is the browser type
needed in an HTTP request message?

P5. The text below shows the reply sent from the server in response to the HTTP
GET message in the question above. Answer the following questions, indicat-
ing where in the message below you find the answer.

HTTP/1.1 200 OK<cr><lf>Date: Tue, 07 Mar 2008
12:39:45GMT<cr><l1f>Server: Apache/2.0.52 (Fedora)
<cr><lf>Last-Modified: Sat, 10 Dec2005 18:27:46
GMT<cr><1f>ETag: "“526c3-f22-a88a4c80"<cr><l1f>Accept-
Ranges: bytes<cr><lf>Content-Length: 3874<cr><1f>
Keep-Alive: timeout=max=100<cr><lf>Connection:
Keep-Alive<cr><lf>Content-Type: text/html; charset=
IS0-8859-1<cr><lf><cr><lf><!doctype html public “-
//w3c//dtd html 4.0 transitional//en”><1f><html><I1f>
<head><1f> <meta http-equiv="Content-Type”
content="text/html; charset=iso-8859-1"><1f> <meta
name="GENERATOR” content="Mozilla/4.79 [en] (Windows NT
5.0; U) Netscape]”><l1f> <title>CMPSCI 453 / 591 /
NTU-ST550A Spring 2005 homepage</title><1f></head><I1f>
<much more document text following here (not shown)>

a. Was the server able to successfully find the document or not? What time
was the document reply provided?

b. When was the document last modified?
c. How many bytes are there in the document being returned?

d. What are the first 5 bytes of the document being returned? Did the server
agree to a persistent connection?

P6.

P7.

PS.

PO.

Obtain the HTTP/1.1 specification (RFC 2616). Answer the following questions:

a. Explain the mechanism used for signaling between the client and server
to indicate that a persistent connection is being closed. Can the client, the
server, or both signal the close of a connection?

b. What encryption services are provided by HTTP?

c. Can a client open three or more simultaneous connections with a given
server?

d. Either a server or a client may close a transport connection between them
if either one detects the connection has been idle for some time. Is it pos-
sible that one side starts closing a connection while the other side is trans-
mitting data via this connection? Explain.

Suppose within your Web browser you click on a link to obtain a Web page.
The IP address for the associated URL is not cached in your local host, so a
DNS lookup is necessary to obtain the IP address. Suppose that n DNS
servers are visited before your host receives the IP address from DNS; the
successive visits incur an RTT of RTT, . . ., RTT,. Further suppose that the
Web page associated with the link contains exactly one object, consisting of a
small amount of HTML text. Let RTT denote the RTT between the local host
and the server containing the object. Assuming zero transmission time of the
object, how much time elapses from when the client clicks on the link until
the client receives the object?

Referring to Problem P7, suppose the HTML file references eight very small
objects on the same server. Neglecting transmission times, how much time
elapses with

a. Non-persistent HTTP with no parallel TCP connections?
b. Non-persistent HTTP with the browser configured for 5 parallel connections?

c. Persistent HTTP?

Consider Figure 2.12, for which there is an institutional network connected to
the Internet. Suppose that the average object size is 850,000 bits and that the
average request rate from the institution’s browsers to the origin servers is 16
requests per second. Also suppose that the amount of time it takes from when
the router on the Internet side of the access link forwards an HTTP request
until it receives the response is three seconds on average (see Section 2.2.5).
Model the total average response time as the sum of the average access delay
(that is, the delay from Internet router to institution router) and the average
Internet delay. For the average access delay, use A/(1 — AB), where A is the
average time required to send an object over the access link and 3 is the
arrival rate of objects to the access link.

a. Find the total average response time.

b. Now suppose a cache is installed in the institutional LAN. Suppose the
miss rate is 0.4. Find the total response time.

PROBLEMS

183

184

CHAPTER 2

e APPLICATION LAYER

P10.

P11.

P12.

P13.

P14.

P15.

Consider a short, 10-meter link, over which a sender can transmit at a rate of
150 bits/sec in both directions. Suppose that packets containing data are
100,000 bits long, and packets containing only control (e.g., ACK or hand-
shaking) are 200 bits long. Assume that N parallel connections each get 1/N
of the link bandwidth. Now consider the HTTP protocol, and suppose that
each downloaded object is 100 Kbits long, and that the initial downloaded
object contains 10 referenced objects from the same sender. Would parallel
downloads via parallel instances of non-persistent HTTP make sense in this
case? Now consider persistent HTTP. Do you expect significant gains over
the non-persistent case? Justify and explain your answer.

Consider the scenario introduced in the previous problem. Now suppose that

the link is shared by Bob with four other users. Bob uses parallel instances of
non-persistent HTTP, and the other four users use non-persistent HTTP with-
out parallel downloads.

a. Do Bob’s parallel connections help him get Web pages more quickly?
Why or why not?

b. If all five users open five parallel instances of non-persistent HTTP, then
would Bob’s parallel connections still be beneficial? Why or why not?

Write a simple TCP program for a server that accepts lines of input from a
client and prints the lines onto the server’s standard output. (You can do this by
modifying the TCPServer.java program in the text.) Compile and execute your
program. On any other machine that contains a Web browser, set the proxy
server in the browser to the host that is running your server program; also con-
figure the port number appropriately. Your browser should now send its GET
request messages to your server, and your server should display the messages
on its standard output. Use this platform to determine whether your browser
generates conditional GET messages for objects that are locally cached.

What is the difference between MAIL. FROM: in SMTP and From: in the
mail message itself?

How does SMTP mark the end of a message body? How about HTTP? Can
HTTP use the same method as SMTP to mark the end of a message body?
Explain.

Read RFC 5321 for SMTP. What does MTA stand for? Consider the follow-
ing received spam email (modified from a real spam email). Assuming only
the originator of this spam email is malacious and all other hosts are honest,
identify the malacious host that has generated this spam email.

From - Fri Nov 07 13:41:30 2008

Return-Path: <tennis5@pp33head.com>

Received: from barmail.cs.umass.edu
(barmail.cs.umass.edu [128.119.240.3]) by cs.umass.edu
(8.13.1/8.12.6) for <hg@cs.umass.edu>; Fri, 7 Nov 2008
13:27:10 -0500

PROBLEMS

Received: from asusus-4b96 (localhost [127.0.0.1]) by
barmail.cs.umass.edu (Spam Firewall) for
<hg@cs.umass.edu>; Fri, 7 Nov 2008 13:27:07 -0500
(EST)

Received: from asusus-4b96 ([58.88.21.177]) by
barmail.cs.umass.edu for <hg@cs.umass.edu>; Fri,

07 Nov 2008 13:27:07 -0500 (EST)

Received: from [58.88.21.177] by
inbnd55.exchangeddd.com; Sat, 8 Nov 2008 01:27:07 +0700
From: "Jonny" <tennis5@pp33head.com>

To: <hgl@cs.umass.edu>

Subject: How to secure your savings

P16. Read the POP3 RFC, RFC 1939. What is the purpose of the UIDL POP3
command?

P17. Consider accessing your e-mail with POP3.

a. Suppose you have configured your POP mail client to operate in the
download-and-delete mode. Complete the following transaction:

C: list

S: 1 498

S: 2 912

S: .

C: retr 1

S: blah blah

I blah
S:

?

b. Suppose you have configured your POP mail client to operate in the
download-and-keep mode. Complete the following transaction:

C: list

S: 1 498

S: 2 912

S: .

C: retr 1

S: blah blah

St i,
S: .

?

185

186

CHAPTER 2

e APPLICATION LAYER

P18.

P19.

P20.

P21.

g.

. Suppose you have configured your POP mail client to operate in the

download-and-keep mode. Using your transcript in part (b), suppose you
retrieve messages 1 and 2, exit POP, and then five minutes later you again
access POP to retrieve new e-mail. Suppose that in the five-minute inter-
val no new messages have been sent to you. Provide a transcript of this
second POP session.

. What is a whois database?

. Use various whois databases on the Internet to obtain the names of two

DNS servers. Indicate which whois databases you used.

. Use nslookup on your local host to send DNS queries to three DNS servers:

your local DNS server and the two DNS servers you found in part (b). Try
querying for Type A, NS, and MX reports. Summarize your findings.

. Use nslookup to find a Web server that has multiple IP addresses. Does

the Web server of your institution (school or company) have multiple IP
addresses?

. Use the ARIN whois database to determine the IP address range used by

your university.

Describe how an attacker can use whois databases and the nslookup tool
to perform reconnaissance on an institution before launching an attack.

Discuss why whois databases should be publicly available.

In this problem, we use the useful tool dig tool available on Unix and Linux
hosts to explore the hierarchy of DNS servers. Recall that in Figure 2.21, a
DNS server higher in the DNS hierarchy delegates a DNS query to a DNS
server lower in the hierarchy, by sending back to the DNS client the name of
that lower-level DNS server. First read the man page for dig, and then answer
the following questions.

a.

Starting with a root DNS server (from one of the root servers [a-m].root-
servers.net), initiate a sequence of queries for the IP address for your
department’s Web server by using dig. Show the list of the names of DNS
servers in the delegation chain in answering your query.

Repeat part a) for several popular Web sites, such as google.com,
yahoo.com, or amazon.com.

Suppose you can access the caches in the local DNS servers of your depart-
ment. Can you propose a way to roughly determine the Web servers (outside
your department) that are most popular among the users in your department?
Explain.

Suppose that your department has a local DNS server for all computers in the
department. You are an ordinary user (i.e., not a network/system administra-
tor). Can you come up a way to determine if an external Web site was very
likely accessed from a computer in your department a couple of seconds ago?
Explain.

pP22.

P23.

p24.

P25.

P26.

pP27.

DISCUSSION QUESTIONS

Consider distributing a file of F'= 15 Gbits to N peers. The server has an upload
rate of u = 30 Mbps, and each peer has a download rate of d; =2 Mbps and an
upload rate of u. For N =10, 100, and 1,000 and u = 300 Kbps, 700 Kbps, and 2
Mbps, prepare a chart giving the minimum distribution time for each of the
combinations of N and u for both client-server distribution and P2P distribution.

Consider distributing a file of F bits to N peers using a client-server architec-
ture. Assume a fluid model where the server can simultaneously transmit to
multiple peers, transmitting to each peer at different rates, as long as the com-
bined rate does not exceed u_.

a. Suppose that u /N <d_. . Specify a distribution scheme that has a distri-
bution time of NF/u_.

b. Suppose that u/N >d . . Specify a distribution scheme that has a distri-
bution time of F/ d .

c. Conclude that the minimum distribution time is in general given by
max{NF/us, F/d

Ny

min

Consider distributing a file of F bits to N peers using a P2P architecture.
Assume a fluid model. For simplicity assume that d . is very large, so that
peer download bandwidth is never a bottleneck.

a. Suppose that u < (u,+ u, + ... + u,)/N. Specify a distribution scheme
that has a distribution time of F/u_.

b. Suppose that u 2 (u, + u, + ... + u,)/N. Specify a distribution scheme
that has a distribution time of NF/(u_+ u, + ... + u,).

c. Conclude that the minimum distribution time is in general given by
max{F/u, NFI(u +u, + ... +u,)}.

Consider an overlay network with N active peers, with each pair of peers hav-
ing an active TCP connection. Additionally, suppose that the TCP connections
pass through a total of M routers. How many nodes and edges are there in the
corresponding overlay network?

Suppose Bob joins a BitTorrent torrent, but he does not want to upload any
data to any other peers (so called free-riding).

a. Bob claims that he can receive a complete copy of the file that is shared
by the swarm. Is Bob’s claim possible? Why or why not?

b. Bob further claims that he can further make his “free-riding” more effi-
cient by using a collection of multiple computers (with distinct IP
addresses) in the computer lab in his department. How can he do that?

In this problem, we are interested in finding out the efficiency of a BitTor-
rent-like P2P file sharing system. Consider two peers Bob and Alice. They
join a torrent with M peers in total (including Bob and Alice) that are sharing
a file consisting of N chunks. Assume that at a particular time #, the chunks
that a peer has are uniformly at random chosen from all N chunks, and no
peer has all N chunks. Answer the following questions.

187

188

CHAPTER 2

e APPLICATION LAYER

P28.

P29.

P30.

P31.

P32.

P33.

P34.

a. What is the probability that Bob has all the chunks that Alice has, given that
the numbers of chunks that Bob and Alice have are denoted by 7, and n,?

b. Remove part of the conditioning in part a) to find out the probability that
Bob has all the chunks that Alice has, given that Alice has n chunks?

c. Suppose that each peer in BitTorrent has 5 neighbors. What is the probabil-
ity that Bob has data that is of interest to at least one of his five neighbors?

In the circular DHT example in Section 2.6.2, suppose that peer 3 learns that
peer 5 has left. How does peer 3 update its successor state information?
Which peer is now its first successor? Its second successor?

In the circular DHT example in Section 2.6.2, suppose that a new peer 6
wants to join the DHT and peer 6 initially only knows peer 15’s IP address.
What steps are taken?

Consider a circular DHT with node and key identifiers in the range [0, 63].
Suppose there are eight peers with identifiers 0, 8, 16, 24, 32, 40, 48, and 56.

a. Suppose each peer can have one shortcut peer. For each of the eight peers,
determine its shortcut peer so that the number of messages sent for any
query (beginning at any peer) is minimized.

b. Repeat (a) but now allow each peer to have two shortcut peers.

Because an integer in [0, 2" — 1] can be expressed as an n-bit binary number in
a DHT, each key can be expressed as k = (ky, k;, . . ., k,_,), and each peer iden-
tifier can be expressed p = (py, py> - - - » P,,_)- Let’s now define the XOR dis-
tance between a key k and peer p as

n—1
d(k, py=Y 1k, = p,12

j=0

Describe how this metric can be used to assign (key, value) pairs to peers.
(To learn about how to build an efficient DHT using this natural metric, see
[Maymounkov 2002] in which the Kademlia DHT is described.)

Consider a generalized version of the scheme described in the previous prob-
lem. Instead of using binary numbers, we now treat key and peer identifiers
as base-b numbers where b > 2, and then use the metric in the previous prob-
lem to design a DHT (with 2 replace with b). Compare this DHT based on
base-b numbers with the DHT based on binary numbers. In the worst case,
which DHT generates more messages per query? Why?

As DHTs are overlay networks, they may not necessarily match the underlay
physical network well in the sense that two neighboring peers might be phys-
ically very far away; for example, one peer could be in Asia and its neighbor
could be in North America. If we randomly and uniformly assign identifiers
to newly joined peers, would this assignment scheme cause such a mismatch?
Explain. And how would such a mismatch affect the DHT’s performance?

Install and compile the Java programs TCPClient and UDPClient on one host
and TCPServer and UDPServer on another host.

P35.

DatagramSocket clientSocket

DatagramSocket clientSocket

SOCKET PROGRAMMING ASSIGNMENTS

a. Suppose you run TCPClient before you run TCPServer. What happens?
Why?

b. Suppose you run UDPClient before you run UDPServer. What happens?
Why?

c. What happens if you use different port numbers for the client and server
sides?

Suppose that in UDPClient.java we replace the line

new DatagramSocket();

with

new DatagramSocket(5432);

Will it become necessary to change UDPServer.java? What are the port num-
bers for the sockets in UDPClient and UDPServer? What were they before
making this change?

EE Discussion Questions

DI.

D2.

D3.

D4.

Ds.

Deé.

D7.

Why do you think P2P file-sharing applications are so popular? Is it because
they (debatably illegally) distribute free music and video? Is it because their
massive number of servers efficiently responds to a massive demand for
megabytes? Or is it all of these?

Read the paper “The Darknet and the Future of Content Distribution” by Bid-
dle, England, Peinado, and Willman [Biddle 2003]. Do you agree with all of
the views of the authors? Why or why not?

E-commerce sites and other Web sites often have back-end databases. How
do HTTP servers communicate with these back-end databases?

How can you configure your browser for local caching? What caching
options do you have?

Can you configure your browser to open multiple simultaneous connections
to a Web site? What are the advantages and disadvantages of having a large
number of simultaneous TCP connections?

We have seen that Internet TCP sockets treat the data being sent as a byte
stream but UDP sockets recognize message boundaries. What are one
advantage and one disadvantage of byte-oriented API versus having the API
explicitly recognize and preserve application-defined message boundaries?

What is the Apache Web server? How much does it cost? What functionality
does it currently have?

189

190

CHAPTER 2

e APPLICATION LAYER

DS8. Many BitTorrent clients use DHTs to create a distributed tracker. For these
DHTs, what is the “key”” and what is the “value”?

D9. Suppose that the Web standards organizations decide to change the naming
convention so that each object is named and referenced by a unique name that
is location-independent (a so-called URN). Discuss some of the issues sur-
rounding such a change.

D10. Are any companies distributing live television feeds over the Internet today?
If so, are these companies using client-server or P2P architectures?

DI1. Are companies today providing a video-on-demand service over the Internet
using a P2P architecture?

D12. How does Skype provide a PC-to-phone service to many different destination
countries?

D13. What are some of the most popular BitTorrent clients today?

m Socket Programming Assignments

Assignment 1: Multi-Threaded Web Server

By the end of this programming assignment, you will have developed, in Java, a
multithreaded Web server that is capable of serving multiple requests in parallel.
You are going to implement version 1.0 of HTTP, as defined in RFC 1945.

HTTP/1.0 creates a separate TCP connection for each request/response pair. A
separate thread handles each of these connections. There will also be a main thread,
in which the server listens for clients that want to establish connections. To simplify
the programming task, we will develop the code in two stages. In the first stage, you
will write a multithreaded server that simply displays the contents of the HTTP
request message that it receives. After this program is running properly, you will add
the code required to generate an appropriate response.

As you develop the code, you can test your server with a Web browser. But
remember that you are not serving through the standard port 80, so you need to
specify the port number within the URL that you give your browser. For example, if
your host’s name is host.someschool.edu, your server is listening to port
6789, and you want to retrieve the file index.html, then you would specify the
following URL within the browser:

http://host.someschool.edu:6789/index.html

When your server encounters an errot, it should send a response message with an
appropriate HTML source so that the error information is displayed in the browser
window. You can find full details of this assignment, as well as important snippets
of Java code, at the Web site http://www.awl.com/kurose-ross.

http://host.someschool.edu:6789/index.html
http://www.awl.com/kurose-ross

SOCKET PROGRAMMING ASSIGNMENTS

Assignment 2: Mail Client

In this assignment, you will develop in Java a mail user agent with the following
characteristics:

* Provides a graphical interface for the sender, with fields for the local mail server,
sender’s e-mail address, recipient’s e-mail address, subject of the message, and
the message itself.

» Establishes a TCP connection between the mail client and the local mail server.
Sends SMTP commands to local mail server. Receives and processes SMTP
commands from local mail server.

Here is what your interface will look like:

You will develop the user agent so it sends an e-mail message to at most one recipi-
ent at a time. Furthermore, the user agent will assume that the domain part of the
recipient’s e-mail address is the canonical name of the recipient’s SMTP server.
(The user agent will not perform a DNS lookup for an MX record, so the sender
must supply the actual name of the mail server.) You can find full details of the
assignment, as well important snippets of Java code, at the Web site http://www
.awl.com/kurose-ross.

Assignment 3: UDP Pinger Lab

In this lab, you will implement a simple UDP-based Ping client and server. The
functionality provided by these programs is similar to the standard Ping program

191

http://www.awl.com/kurose-ross
http://www.awl.com/kurose-ross

192

CHAPTER 2

e APPLICATION LAYER

available in modern operating systems. Standard Ping works by sending Internet
Control Message Protocol (ICMP) ECHO messages, which the remote machine
echoes back to the sender. The sender can then determine the round-trip time
between itself and the computer it pinged.

Java does not provide any functionality to send or receive ICMP messages, which
is why in this lab you will implement the pinging in the application layer with standard
UDP sockets and messages. You can find full details of the assignment, as well impor-
tant snippets of Java code, at the Web site http://www.awl.com/kurose-ross.

Assignment 4: Web Proxy Server

In this lab you’ll develop a simple Web proxy server, which is also able to cache
Web pages. This server will accept a GET message from a browser, forward the
GET message to the destination Web server, receive the HTTP response message
from the destination server, and forward the HTTP response message to the browser.
This is a very simple proxy server; it only understands simple GET requests. How-
ever, the server is able to handle all kinds of objects, not just HTML pages, includ-
ing images. You can find full details of the assignment, as well important snippets
of Java code, at the Web site http://www.awl.com/kurose-ross.

Em Wireshark Labs

Wireshark Lab: HTTP

Having gotten our feet wet with the Wireshark packet sniffer in Lab 1, we’re now
ready to use Wireshark to investigate protocols in operation. In this lab, we’ll explore
several aspects of the HTTP protocol: the basic GET/reply interaction, HTTP message
formats, retrieving large HTML files, retrieving HTML files with embedded URLs,
persistent and non-persistent connections, and HTTP authentication and security.

As is the case with all Wireshark labs, the full description of this lab is available
at this book’s Web site, http://www.awl.com/kurose-ross.

Wireshark Lab: DNS

In this lab, we take a closer look at the client side of the DNS, the protocol that trans-
lates Internet hostnames to IP addresses. Recall from Section 2.5 that the client’s role in
the DNS is relatively simple—a client sends a query to its local DNS server and
receives a response back. Much can go on under the covers, invisible to the DNS
clients, as the hierarchical DNS servers communicate with each other to either recur-
sively or iteratively resolve the client’s DNS query. From the DNS client’s standpoint,
however, the protocol is quite simple—a query is formulated to the local DNS server
and a response is received from that server. We observe DNS in action in this lab.

The full description of this lab is available at this book’s Web site, http://www
.awl.com/kurose-ross.

http://www.awl.com/kurose-ross
http://www.awl.com/kurose-ross
http://www.awl.com/kurose-ross
http://www.awl.com/kurose-ross
http://www.awl.com/kurose-ross

AN INTERVIEW WITH...

Bram Cohen

Bram Cohen is the Chief Scientist and cofounder of BitTorrent, Inc.
and the creator of the BifTorrent peerto-peer (P2P) file distribution
protocol. Bram is also the cofounder of CodeCon and the co-author
of Codeville. Prior to the creation of BitTorrent, Bram worked at

MojoNation. MojoNation allowed people to break up confidential
files into encrypted chunks and disfribute those pieces fo other com-
puters running MojoNation’s software. This concept served as the
inspiration for Bram'’s development of BiTorrent. Before MojoNation,
Bram was a quintessential dotcommer, working for several Infernet
companies through the midtolate 1990s. Bram grew up in New
York City, graduated from Stuyvesant High School, and attended the
University of Buffalo.

How did you get the idea to develop BifTorrent?

I had quite a bit of work experience doing networking (protocols on top of TCP/UDP), and
implementing swarming seemed like the most interesting unsolved problem of the time, so I
decided to work on it.

The core calculation behind BitTorrent is a trivial one: There’s plenty of upload capaci-
ty out there. Numerous other people made this observation as well. But making an imple-
mentation which could handle the logistics involved is a whole other problem.

What were the most challenging aspects of developing BitTorrent?

The most fundamental part was getting the overall design and gestalt of the protocol right.
Once that was in place, fleshing it out was a “simple matter of programming.” In terms of
implementation, by far the most difficult part was implementing a reliable system. When
dealing with untrusted peers, you have to assume any of them can do anything at any time,
and have some kind of behavior set up for all edge cases. I kept having to rewrite large sec-
tion of BitTorrent when I was first creating it as new problems came up and the overall
design became more clear.

How did people initially come to discover BifTorrent?

People generally discovered BitTorrent as downloaders. There was some piece of content
which they wanted, and it was only available using BitTorrent, so they downloaded it that
way. A publisher often decided to use BitTorrent because they simply didn’t have the band-
width to distribute their content in any other way.

193

194

Comment on your thoughts about the RIAA’'s and MPAA's legal actions against people
using file-sharing programs like BitTorrent to distribute movies and music? Have you ever
been sued for developing technologies that illegally distribute copyrighted material?

Copyright infringement is illegal. Technology is not. I’ve never been sued, because I
haven’t engaged in any copyright infringement. If you’re interested in making technology,
you should stick to the technology.

Do you think in the near future, other file distribution systems may come along that will
replace BitTorrent? For example, might Microsoft include its own proprietary file distribu-
tion protocol in an upcoming release of an operating system?

There may be other common protocols in the future, but the fundamental principles of how
to swarm data, as elucidated in the BitTorrent protocol, are unlikely to change. The most
likely way a fundamental shift could happen is if there is a fundamental shift in the overall
structure of the Internet due to the ratios between some of the fundamental constants chang-
ing radically as speeds increase. But projections for the next couple of years just reinforce
the current model even further.

More generally, where do you see the Internet heading? What do you think are, or will
be, the most important technical challenges? Do you envision any new ‘killer apps’ on the
horizon?

The Internet, and computers generally, is becoming ever more ubiquitous. The iPod nano
looks like a party favor because inevitably some day it will be, as prices come down. The
current most exciting technical challenge is to collect as much data as possible from all the
connected devices and make that data available in an accessible and useful form. For exam-
ple, almost every portable device could contain a GPS, and every object you own, including
clothes, toys, appliances, and furniture, could let you know where it is when you lose it and
give you a full rundown on its current history including necessary maintenance, expected
future utility, detection of maltreatment, etc. Not only could you get information about your
own possessions, but information about, say, the general lifecycle of a particular product
could be gathered quite precisely, and coordination with other people would become much
easier, beyond the simple but dramatic improvement that people can easily find each other
when they both have mobile phones.

Has anyone inspired you professionally? In what ways?

No particular parables come to mind, but the general mythos of the Silicon Valley startup is
one which I've followed quite closely.

Do you have any advice for students entering the networking/Internet field?

Find something which isn’t hot right now but which you think exciting things could be done
in and which you personally find very interesting, and start working on that. Also try to get
professional experience in the field you wish to work on. Real-world experiences teach you
what’s important in the real world, and that’s something which is always very skewed when
only viewed from inside academia.

195

This page intentionally left blank

Transport
Layer

Residing between the application and network layers, the transport layer is a central
piece of the layered network architecture. It has the critical role of providing com-
munication services directly to the application processes running on different hosts.
The pedagogic approach we take in this chapter is to alternate between discussions
of transport-layer principles and discussions of how these principles are imple-
mented in existing protocols; as usual, particular emphasis will be given to Internet
protocols, in particular the TCP and UDP transport-layer protocols.

We’ll begin by discussing the relationship between the transport and network
layers. This sets the stage for examining the first critical function of the transport
layer—extending the network layer’s delivery service between two end systems to a
delivery service between two application-layer processes running on the end sys-
tems. We’ll illustrate this function in our coverage of the Internet’s connectionless
transport protocol, UDP.

We’ll then return to principles and confront one of the most fundamental prob-
lems in computer networking—how two entities can communicate reliably over a
medium that may lose and corrupt data. Through a series of increasingly compli-
cated (and realistic!) scenarios, we’ll build up an array of techniques that transport
protocols use to solve this problem. We’ll then show how these principles are
embodied in TCP, the Internet’s connection-oriented transport protocol.

We’ll next move on to a second fundamentally important problem in networking—
controlling the transmission rate of transport-layer entities in order to avoid, or

197

198

CHAPTER 3

* TRANSPORT LAYER

recover from, congestion within the network. We’ll consider the causes and conse-
quences of congestion, as well as commonly used congestion-control techniques.
After obtaining a solid understanding of the issues behind congestion control, we’ll
study TCP’s approach to congestion control.

3.1 Introduction and Transport-Layer Services

In the previous two chapters we touched on the role of the transport layer and the
services that it provides. Let’s quickly review what we have already learned about
the transport layer.

A transport-layer protocol provides for logical communication between appli-
cation processes running on different hosts. By logical communication, we mean
that from an application’s perspective, it is as if the hosts running the processes were
directly connected; in reality, the hosts may be on opposite sides of the planet, con-
nected via numerous routers and a wide range of link types. Application processes
use the logical communication provided by the transport layer to send messages to
each other, free from the worry of the details of the physical infrastructure used to
carry these messages. Figure 3.1 illustrates the notion of logical communication.

As shown in Figure 3.1, transport-layer protocols are implemented in the end
systems but not in network routers. On the sending side, the transport layer converts
the messages it receives from a sending application process into transport-layer
packets, known as transport-layer segments in Internet terminology. This is done by
(possibly) breaking the application messages into smaller chunks and adding a
transport-layer header to each chunk to create the transport-layer segment. The
transport layer then passes the segment to the network layer at the sending end sys-
tem, where the segment is encapsulated within a network-layer packet (a datagram)
and sent to the destination. It’s important to note that network routers act only on the
network-layer fields of the datagram; that is, they do not examine the fields of the
transport-layer segment encapsulated with the datagram. On the receiving side, the
network layer extracts the transport-layer segment from the datagram and passes the
segment up to the transport layer. The transport layer then processes the received
segment, making the data in the segment available to the receiving application.

More than one transport-layer protocol may be available to network applications.
For example, the Internet has two protocols—TCP and UDP. Each of these protocols
provides a different set of transport-layer services to the invoking application.

3.1.1 Relationship Between Transport and Network Layers

Recall that the transport layer lies just above the network layer in the protocol stack.
Whereas a transport-layer protocol provides logical communication between
processes running on different hosts, a network-layer protocol provides logical

3.1 « INTRODUCTION AND TRANSPORT-LAYER SERVICES

u

Mobile Global ISP

Network ¢

>< X
LS

r
as

199

= Network
} — 1, Data link
Physical
@ Network =
— Data link @ @
Physical — ' Np——
Application 2 S el ar etwor
Transport \— = Regional ISP Data link
Network Home Network Physical
Data link (09/'¢ Netwc.)rk
Physical Vo Data link
"ot, - Network
O.o Physical -
oy Data link
Physical
>><
l —
‘
o Application
Company Network Transport
Network
Data link
Physical

Figure 3.1 ¢ The transport layer provides logical rather than physical
communication between application processes.

200

CHAPTER 3

* TRANSPORT LAYER

communication between hosts. This distinction is subtle but important. Let’s exam-
ine this distinction with the aid of a household analogy.

Consider two houses, one on the East Coast and the other on the West Coast, with
each house being home to a dozen kids. The kids in the East Coast household are
cousins of the kids in the West Coast household. The kids in the two households love
to write to each other—each kid writes each cousin every week, with each letter deliv-
ered by the traditional postal service in a separate envelope. Thus, each household
sends 144 letters to the other household every week. (These kids would save a lot of
money if they had e-mail!) In each of the households there is one kid—Ann in the
West Coast house and Bill in the East Coast house—responsible for mail collection
and mail distribution. Each week Ann visits all her brothers and sisters, collects the
mail, and gives the mail to a postal-service mail carrier, who makes daily visits to the
house. When letters arrive at the West Coast house, Ann also has the job of distribut-
ing the mail to her brothers and sisters. Bill has a similar job on the East Coast.

In this example, the postal service provides logical communication between the
two houses—the postal service moves mail from house to house, not from person to
person. On the other hand, Ann and Bill provide logical communication among the
cousins—Ann and Bill pick up mail from, and deliver mail to, their brothers and sis-
ters. Note that from the cousins’ perspective, Ann and Bill are the mail service, even
though Ann and Bill are only a part (the end-system part) of the end-to-end delivery
process. This household example serves as a nice analogy for explaining how the
transport layer relates to the network layer:

application messages = letters in envelopes

processes = cousins

hosts (also called end systems) = houses

transport-layer protocol = Ann and Bill

network-layer protocol = postal service (including mail carriers)

Continuing with this analogy, note that Ann and Bill do all their work within
their respective homes; they are not involved, for example, in sorting mail in any
intermediate mail center or in moving mail from one mail center to another. Simi-
larly, transport-layer protocols live in the end systems. Within an end system, a
transport protocol moves messages from application processes to the network edge
(that is, the network layer) and vice versa, but it doesn’t have any say about how the
messages are moved within the network core. In fact, as illustrated in Figure 3.1,
intermediate routers neither act on, nor recognize, any information that the transport
layer may have added to the application messages.

Continuing with our family saga, suppose now that when Ann and Bill go on
vacation, another cousin pair—say, Susan and Harvey—substitute for them and pro-
vide the household-internal collection and delivery of mail. Unfortunately for the
two families, Susan and Harvey do not do the collection and delivery in exactly the
same way as Ann and Bill. Being younger kids, Susan and Harvey pick up and drop
off the mail less frequently and occasionally lose letters (which are sometimes

3.1« INTRODUCTION AND TRANSPORT-LAYER SERVICES

chewed up by the family dog). Thus, the cousin-pair Susan and Harvey do not pro-
vide the same set of services (that is, the same service model) as Ann and Bill. In an
analogous manner, a computer network may make available multiple transport pro-
tocols, with each protocol offering a different service model to applications.

The possible services that Ann and Bill can provide are clearly constrained by
the possible services that the postal service provides. For example, if the postal serv-
ice doesn’t provide a maximum bound on how long it can take to deliver mail
between the two houses (for example, three days), then there is no way that Ann and
Bill can guarantee a maximum delay for mail delivery between any of the cousin
pairs. In a similar manner, the services that a transport protocol can provide are often
constrained by the service model of the underlying network-layer protocol. If the
network-layer protocol cannot provide delay or bandwidth guarantees for transport-
layer segments sent between hosts, then the transport-layer protocol cannot provide
delay or bandwidth guarantees for application messages sent between processes.

Nevertheless, certain services can be offered by a transport protocol even when
the underlying network protocol doesn’t offer the corresponding service at the net-
work layer. For example, as we’ll see in this chapter, a transport protocol can offer
reliable data transfer service to an application even when the underlying network
protocol is unreliable, that is, even when the network protocol loses, garbles, or
duplicates packets. As another example (which we’ll explore in Chapter 8 when we
discuss network security), a transport protocol can use encryption to guarantee that
application messages are not read by intruders, even when the network layer cannot
guarantee the confidentiality of transport-layer segments.

3.1.2 Overview of the Transport Layer in the Internet

Recall that the Internet, and more generally a TCP/IP network, makes available two
distinct transport-layer protocols to the application layer. One of these protocols is
UDP (User Datagram Protocol), which provides an unreliable, connectionless serv-
ice to the invoking application. The second of these protocols is TCP (Transmission
Control Protocol), which provides a reliable, connection-oriented service to the
invoking application. When designing a network application, the application devel-
oper must specify one of these two transport protocols. As we saw in Sections 2.7 and
2.8, the application developer selects between UDP and TCP when creating sockets.
To simplify terminology, when in an Internet context, we refer to the transport-
layer packet as a segment. We mention, however, that the Internet literature (for exam-
ple, the RFCs) also refers to the transport-layer packet for TCP as a segment but often
refers to the packet for UDP as a datagram. But this same Internet literature also uses
the term datagram for the network-layer packet! For an introductory book on computer
networking such as this, we believe that it is less confusing to refer to both TCP and
UDP packets as segments, and reserve the term datagram for the network-layer packet.
Before proceeding with our brief introduction of UDP and TCP, it will be use-
ful to say a few words about the Internet’s network layer. (The network layer is
examined in detail in Chapter 4.) The Internet’s network-layer protocol has a

201

202

CHAPTER 3

* TRANSPORT LAYER

name—IP, for Internet Protocol. IP provides logical communication between hosts.
The IP service model is a best-effort delivery service. This means that IP makes its
“best effort” to deliver segments between communicating hosts, but it makes no
guarantees. In particular, it does not guarantee segment delivery, it does not guaran-
tee orderly delivery of segments, and it does not guarantee the integrity of the data
in the segments. For these reasons, IP is said to be an unreliable service. We also
mention here that every host has at least one network-layer address, a so-called IP
address. We’ll examine IP addressing in detail in Chapter 4; for this chapter we need
only keep in mind that each host has an IP address.

Having taken a glimpse at the IP service model, let’s now summarize the serv-
ice models provided by UDP and TCP. The most fundamental responsibility of UDP
and TCP is to extend IP’s delivery service between two end systems to a delivery
service between two processes running on the end systems. Extending host-to-host
delivery to process-to-process delivery is called transport-layer multiplexing and
demultiplexing. We’ll discuss transport-layer multiplexing and demultiplexing in
the next section. UDP and TCP also provide integrity checking by including error-
detection fields in their segments’ headers. These two minimal transport-layer serv-
ices—process-to-process data delivery and error checking—are the only two
services that UDP provides! In particular, like IP, UDP is an unreliable service—it
does not guarantee that data sent by one process will arrive intact (or at all!) to the
destination process. UDP is discussed in detail in Section 3.3.

TCP, on the other hand, offers several additional services to applications. First
and foremost, it provides reliable data transfer. Using flow control, sequence num-
bers, acknowledgments, and timers (techniques we’ll explore in detail in this chap-
ter), TCP ensures that data is delivered from sending process to receiving process,
correctly and in order. TCP thus converts IP’s unreliable service between end sys-
tems into a reliable data transport service between processes. TCP also provides
congestion control. Congestion control is not so much a service provided to the
invoking application as it is a service for the Internet as a whole, a service for the
general good. Loosely speaking, TCP congestion control prevents any one TCP con-
nection from swamping the links and routers between communicating hosts with an
excessive amount of traffic. TCP strives to give each connection traversing a con-
gested link an equal share of the link bandwidth. This is done by regulating the rate
at which the sending sides of TCP connections can send traffic into the network.
UDP traffic, on the other hand, is unregulated. An application using UDP transport
can send at any rate it pleases, for as long as it pleases.

A protocol that provides reliable data transfer and congestion control is neces-
sarily complex. We’ll need several sections to cover the principles of reliable data
transfer and congestion control, and additional sections to cover the TCP protocol
itself. These topics are investigated in Sections 3.4 through 3.8. The approach taken
in this chapter is to alternate between basic principles and the TCP protocol. For
example, we’ll first discuss reliable data transfer in a general setting and then dis-
cuss how TCP specifically provides reliable data transfer. Similarly, we’ll first dis-

3.2 '« MULTIPLEXING AND DEMULTIPLEXING

cuss congestion control in a general setting and then discuss how TCP performs con-
gestion control. But before getting into all this good stuff, let’s first look at
transport-layer multiplexing and demultiplexing.

3.2 Multiplexing and Demultiplexing

In this section we discuss transport-layer multiplexing and demultiplexing, that is,
extending the host-to-host delivery service provided by the network layer to a
process-to-process delivery service for applications running on the hosts. In order to
keep the discussion concrete, we’ll discuss this basic transport-layer service in the
context of the Internet. We emphasize, however, that a multiplexing/demultiplexing
service is needed for all computer networks.

At the destination host, the transport layer receives segments from the network
layer just below. The transport layer has the responsibility of delivering the data in
these segments to the appropriate application process running in the host. Let’s take
a look at an example. Suppose you are sitting in front of your computer, and you are
downloading Web pages while running one FTP session and two Telnet sessions.
You therefore have four network application processes running—two Telnet
processes, one FTP process, and one HTTP process. When the transport layer in
your computer receives data from the network layer below, it needs to direct the
received data to one of these four processes. Let’s now examine how this is done.

First recall from Sections 2.7 and 2.8 that a process (as part of a network appli-
cation) can have one or more sockets, doors through which data passes from the net-
work to the process and through which data passes from the process to the network.
Thus, as shown in Figure 3.2, the transport layer in the receiving host does not actu-
ally deliver data directly to a process, but instead to an intermediary socket. Because
at any given time there can be more than one socket in the receiving host, each
socket has a unique identifier. The format of the identifier depends on whether the
socket is a UDP or a TCP socket, as we’ll discuss shortly.

Now let’s consider how a receiving host directs an incoming transport-layer
segment to the appropriate socket. Each transport-layer segment has a set of fields
in the segment for this purpose. At the receiving end, the transport layer examines
these fields to identify the receiving socket and then directs the segment to that
socket. This job of delivering the data in a transport-layer segment to the correct
socket is called demultiplexing. The job of gathering data chunks at the source host
from different sockets, encapsulating each data chunk with header information (that
will later be used in demultiplexing) to create segments, and passing the segments
to the network layer is called multiplexing. Note that the transport layer in the mid-
dle host in Figure 3.2 must demultiplex segments arriving from the network layer
below to either process P, or P, above; this is done by directing the arriving seg-
ment’s data to the corresponding process’s socket. The transport layer in the middle

203

204 CHAPTER 3 e TRANSPORT LAYER
Application (TP, P,) Application (P, P,) Application
Transport Transport Transport
Network Network Network
r —
Data link — Data link Data link
Physical Physical Physical

Key:

O Process [Socket

Figure 3.2 ¢ Transportlayer multiplexing and demultiplexing

host must also gather outgoing data from these sockets, form transport-layer
segments, and pass these segments down to the network layer. Although we have
introduced multiplexing and demultiplexing in the context of the Internet transport
protocols, it’s important to realize that they are concerns whenever a single protocol
at one layer (at the transport layer or elsewhere) is used by multiple protocols at the
next higher layer.

To illustrate the demultiplexing job, recall the household analogy in the previ-
ous section. Each of the kids is identified by his or her name. When Bill receives a
batch of mail from the mail carrier, he performs a demultiplexing operation by
observing to whom the letters are addressed and then hand delivering the mail to his
brothers and sisters. Ann performs a multiplexing operation when she collects let-
ters from her brothers and sisters and gives the collected mail to the mail person.

Now that we understand the roles of transport-layer multiplexing and demulti-
plexing, let us examine how it is actually done in a host. From the discussion above,
we know that transport-layer multiplexing requires (1) that sockets have unique
identifiers and (2) that each segment have special fields that indicate the socket to
which the segment is to be delivered. These special fields, illustrated in Figure 3.3,
are the source port number field and the destination port number field. (The
UDP and TCP segments have other fields as well, as discussed in the subsequent
sections of this chapter.) Each port number is a 16-bit number, ranging from 0 to
65535. The port numbers ranging from 0 to 1023 are called well-known port num-
bers and are restricted, which means that they are reserved for use by well-known
application protocols such as HTTP (which uses port number 80) and FTP (which
uses port number 21). The list of well-known port numbers is given in RFC 1700

3.2« MULTIPLEXING AND DEMULTIPLEXING

32 bits
|

Source port # Dest. port #

Other header fields

Application
data
(message)

Figure 3.3 ¢ Source and destination port-number fields in a transport-layer
segment

and is updated at http://www.iana.org [RFC 3232]. When we develop a new appli-
cation (such as one of the applications developed in Sections 2.7 and 2.8), we must
assign the application a port number.

It should now be clear how the transport layer could implement the demultiplex-
ing service: Each socket in the host could be assigned a port number, and when a seg-
ment arrives at the host, the transport layer examines the destination port number in
the segment and directs the segment to the corresponding socket. The segment’s data
then passes through the socket into the attached process. As we’ll see, this is basi-
cally how UDP does it. However, we’ll also see that multiplexing/demultiplexing in
TCP is yet more subtle.

Connectionless Multiplexing and Demultiplexing

Recall from Section 2.8 that a Java program running in a host can create a UDP
socket with the line

DatagramSocket mySocket = new DatagramSocket();

When a UDP socket is created in this manner, the transport layer automatically assigns
a port number to the socket. In particular, the transport layer assigns a port number in
the range 1024 to 65535 that is currently not being used by any other UDP port in the
host. Alternatively, a Java program could create a socket with the line

DatagramSocket mySocket = new DatagramSocket(19157);
In this case, the application assigns a specific port number—namely, 19157—to the

UDP socket. If the application developer writing the code were implementing the
server side of a “well-known protocol,” then the developer would have to assign the

205

http://www.iana.org

206

CHAPTER 3

* TRANSPORT LAYER

corresponding well-known port number. Typically, the client side of the application
lets the transport layer automatically (and transparently) assign the port number,
whereas the server side of the application assigns a specific port number.

With port numbers assigned to UDP sockets, we can now precisely describe
UDP multiplexing/demultiplexing. Suppose a process in Host A, with UDP port
19157, wants to send a chunk of application data to a process with UDP port 46428
in Host B. The transport layer in Host A creates a transport-layer segment that
includes the application data, the source port number (19157), the destination port
number (46428), and two other values (which will be discussed later, but are unim-
portant for the current discussion). The transport layer then passes the resulting seg-
ment to the network layer. The network layer encapsulates the segment in an IP
datagram and makes a best-effort attempt to deliver the segment to the receiving host.
If the segment arrives at the receiving Host B, the transport layer at the receiving
host examines the destination port number in the segment (46428) and delivers the
segment to its socket identified by port 46428. Note that Host B could be running
multiple processes, each with its own UDP socket and associated port number. As
UDP segments arrive from the network, Host B directs (demultiplexes) each segment
to the appropriate socket by examining the segment’s destination port number.

It is important to note that a UDP socket is fully identified by a two-tuple consist-
ing of a destination IP address and a destination port number. As a consequence, if two
UDP segments have different source IP addresses and/or source port numbers, but have
the same destination 1P address and destination port number, then the two segments
will be directed to the same destination process via the same destination socket.

You may be wondering now, what is the purpose of the source port number? As
shown in Figure 3.4, in the A-to-B segment the source port number serves as part of
a “return address”—when B wants to send a segment back to A, the destination port
in the B-to-A segment will take its value from the source port value of the A-to-B
segment. (The complete return address is A’s IP address and the source port num-
ber.) As an example, recall the UDP server program studied in Section 2.8. In
UDPServer. java, the server uses a method to extract the source port number
from the segment it receives from the client; it then sends a new segment to the
client, with the extracted source port number serving as the destination port number
in this new segment.

Connection-Oriented Multiplexing and Demultiplexing

In order to understand TCP demultiplexing, we have to take a close look at TCP
sockets and TCP connection establishment. One subtle difference between a TCP
socket and a UDP socket is that a TCP socket is identified by a four-tuple: (source
IP address, source port number, destination IP address, destination port number).
Thus, when a TCP segment arrives from the network to a host, the host uses all four
values to direct (demultiplex) the segment to the appropriate socket. In particular,
and in contrast with UDP, two arriving TCP segments with different source IP

3.2 '« MULTIPLEXING AND DEMULTIPLEXING

Client process

4 | —Socket
Host A 1
source port: dest. port:
19157 46428
e

Server B

LL ‘ —

“—N

source port: dest. port:
46428 19157

Figure 3.4 ¢ The inversion of source and destination port numbers

addresses or source port numbers will (with the exception of a TCP segment carry-
ing the original connection-establishment request) be directed to two different sock-
ets. To gain further insight, let’s reconsider the TCP client-server programming
example in Section 2.7:

* The TCP server application has a “welcoming socket,” which waits for connection-
establishment requests from TCP clients (see Figure 2.29) on port number 6789.

* The TCP client generates a connection-establishment segment with the line
Socket clientSocket = new Socket(“serverHostName”, 6789);

* A connection-establishment request is nothing more than a TCP segment with desti-
nation port number 6789 and a special connection-establishment bit set in the TCP
header (discussed in Section 3.5). The segment also includes a source port number,
which was chosen by the client. The line above also creates a TCP socket for the
client process, through which data can enter and leave the client process.

* When the host operating system of the computer running the server process
receives the incoming connection-request segment with destination port 6789, it
locates the server process that is waiting to accept a connection on port number
6789. The server process then creates a new socket:

Socket connectionSocket = welcomeSocket.accept();

207

208

CHAPTER 3

* TRANSPORT LAYER

* Also, the transport layer at the server notes the following four values in the con-
nection-request segment: (1) the source port number in the segment, (2) the IP
address of the source host, (3) the destination port number in the segment, and
(4) its own IP address. The newly created connection socket is identified by these
four values; all subsequently arriving segments whose source port, source IP
address, destination port, and destination IP address match these four values will
be demultiplexed to this socket. With the TCP connection now in place, the client
and server can now send data to each other.

The server host may support many simultaneous TCP sockets, with each socket
attached to a process, and with each socket identified by its own four-tuple. When a
TCP segment arrives at the host, all four fields (source IP address, source port,
destination IP address, destination port) are used to direct (demultiplex) the segment
to the appropriate socket.

FOCUS ON SECURITY

PORT SCANNING

We've seen that a server process waits patiently on an open port for contact by a
remote client. Some ports are reserved for well-known applications (e.g., Web, FTP,
DNS, and SMTP servers); other ports are used by convention by popular applications
(e.g., the Microsoft 2000 SQL server listens for requests on UDP port 1434). Thus, if
we determine that a port is open on a host, we may be able to map that port to a
specific application running on the host. This is very useful for system administrators,
who are often interested in knowing which network applications are running on the
hosts in their networks. But attackers, in order to “case the joint,” also want to know
which ports are open on target hosts. If a host is found to be running an application
with a known security flaw (e.g., a SQL server listening on port 1434 was subject to
a buffer overflow, allowing a remote user to execute arbitrary code on the vulnerable
host, a flaw exploited by the Slammer worm [CERT 2003-04]), then that host is ripe
for attack.

Determining which applications are listening on which ports is a relatively easy
task. Indeed there are a number of public domain programs, called port scanners,
that do just that. Perhaps the most widely used of these is nmap, freely available at
http://insecure.org/nmap and included in most Linux distributions. For TCP, nmap
sequentially scans ports, looking for ports that are accepting TCP connections. For
UDP, nmap again sequentially scans ports, looking for UDP ports that respond to
transmitted UDP segments. In both cases, nmap returns a list of open, closed, or
unreachable ports. A host running nmap can attempt to scan any target host any-
where in the Internet. We'll revisit nmap in Section 3.5.6, when we discuss TCP con-
nection management.

http://insecure.org/nmap

3.2« MULTIPLEXING AND DEMULTIPLEXING 209
Web client Per-connection
host C HTTP
processes
e
— Transport-
source port: dest. port: source port: dest. port: layer
7532 80 26145 80 demultiplexing
source IP: dest. IP: source IP: dest. IP:
C B C B
Web client J
host A k J

r

‘—»

source port: dest. port:
26145 80
source IP: dest. IP:
A B

Figure 3.5 ¢ Two clients, using the same destination port number (80) to
communicate with the same Web server application

The situation is illustrated in Figure 3.5, in which Host C initiates two HTTP ses-
sions to server B, and Host A initiates one HTTP session to B. Hosts A and C and server
B each have their own unique IP address—A, C, and B, respectively. Host C assigns
two different source port numbers (26145 and 7532) to its two HTTP connections.
Because Host A is choosing source port numbers independently of C, it might also
assign a source port of 26145 to its HTTP connection. But this is not a problem—server
B will still be able to correctly demultiplex the two connections having the same source
port number, since the two connections have different source IP addresses.

Web Servers and TCP

Before closing this discussion, it’s instructive to say a few additional words about
Web servers and how they use port numbers. Consider a host running a Web server,
such as an Apache Web server, on port 80. When clients (for example, browsers)
send segments to the server, all segments will have destination port 80. In particu-
lar, both the initial connection-establishment segments and the segments carrying
HTTP request messages will have destination port 80. As we have just described,

210

CHAPTER 3

* TRANSPORT LAYER

the server distinguishes the segments from the different clients using source IP
addresses and source port numbers.

Figure 3.5 shows a Web server that spawns a new process for each connection.
As shown in Figure 3.5, each of these processes has its own connection socket
through which HTTP requests arrive and HTTP responses are sent. We mention,
however, that there is not always a one-to-one correspondence between connection
sockets and processes. In fact, today’s high-performing Web servers often use only
one process, and create a new thread with a new connection socket for each new
client connection. (A thread can be viewed as a lightweight subprocess.) If you did
the first programming assignment in Chapter 2, you built a Web server that does just
this. For such a server, at any given time there may be many connection sockets
(with different identifiers) attached to the same process.

If the client and server are using persistent HTTP, then throughout the duration
of the persistent connection the client and server exchange HTTP messages via the
same server socket. However, if the client and server use non-persistent HTTP, then
a new TCP connection is created and closed for every request/response, and hence
a new socket is created and later closed for every request/response. This frequent
creating and closing of sockets can severely impact the performance of a busy Web
server (although a number of operating system tricks can be used to mitigate
the problem). Readers interested in the operating system issues surrounding per-
sistent and non-persistent HTTP are encouraged to see [Nielsen 1997; Nahum
2002].

Now that we’ve discussed transport-layer multiplexing and demultiplexing,
let’s move on and discuss one of the Internet’s transport protocols, UDP. In the next
section we’ll see that UDP adds little more to the network-layer protocol than a mul-
tiplexing/demultiplexing service.

3.3 Connectionless Transport: UDP

In this section, we’ll take a close look at UDP, how it works, and what it does.
We encourage you to refer back to Section 2.1, which includes an overview of
the UDP service model, and to Section 2.8, which discusses socket programming
using UDP.

To motivate our discussion about UDP, suppose you were interested in design-
ing a no-frills, bare-bones transport protocol. How might you go about doing this?
You might first consider using a vacuous transport protocol. In particular, on the
sending side, you might consider taking the messages from the application process
and passing them directly to the network layer; and on the receiving side, you might
consider taking the messages arriving from the network layer and passing them
directly to the application process. But as we learned in the previous section, we
have to do a little more than nothing! At the very least, the transport layer has to

3.3 '« CONNECTIONLESS TRANSPORT: UDP

provide a multiplexing/demultiplexing service in order to pass data between the
network layer and the correct application-level process.

UDP, defined in [RFC 768], does just about as little as a transport protocol can
do. Aside from the multiplexing/demultiplexing function and some light error
checking, it adds nothing to IP. In fact, if the application developer chooses UDP
instead of TCP, then the application is almost directly talking with IP. UDP takes
messages from the application process, attaches source and destination port number
fields for the multiplexing/demultiplexing service, adds two other small fields, and
passes the resulting segment to the network layer. The network layer encapsulates
the transport-layer segment into an IP datagram and then makes a best-effort attempt
to deliver the segment to the receiving host. If the segment arrives at the receiving
host, UDP uses the destination port number to deliver the segment’s data to the cor-
rect application process. Note that with UDP there is no handshaking between send-
ing and receiving transport-layer entities before sending a segment. For this reason,
UDP is said to be connectionless.

DNS is an example of an application-layer protocol that typically uses UDP.
When the DNS application in a host wants to make a query, it constructs a DNS
query message and passes the message to UDP. Without performing any handshak-
ing with the UDP entity running on the destination end system, the host-side UDP
adds header fields to the message and passes the resulting segment to the network
layer. The network layer encapsulates the UDP segment into a datagram and sends
the datagram to a name server. The DNS application at the querying host then waits
for a reply to its query. If it doesn’t receive a reply (possibly because the underlying
network lost the query or the reply), either it tries sending the query to another name
server, or it informs the invoking application that it can’t get a reply.

Now you might be wondering why an application developer would ever choose
to build an application over UDP rather than over TCP. Isn’t TCP always preferable,
since TCP provides a reliable data transfer service, while UDP does not? The answer
is no, as many applications are better suited for UDP for the following reasons:

e Finer application-level control over what data is sent, and when. Under UDP, as
soon as an application process passes data to UDP, UDP will package the data
inside a UDP segment and immediately pass the segment to the network layer.
TCP, on the other hand, has a congestion-control mechanism that throttles the
transport-layer TCP sender when one or more links between the source and des-
tination hosts become excessively congested. TCP will also continue to resend a
segment until the receipt of the segment has been acknowledged by the destina-
tion, regardless of how long reliable delivery takes. Since real-time applications
often require a minimum sending rate, do not want to overly delay segment
transmission, and can tolerate some data loss, TCP’s service model is not partic-
ularly well matched to these applications’ needs. As discussed below, these appli-
cations can use UDP and implement, as part of the application, any additional
functionality that is needed beyond UDP’s no-frills segment-delivery service.

211

212

CHAPTER 3

TRANSPORT LAYER

* No connection establishment. As we’ll discuss later, TCP uses a three-way hand-
shake before it starts to transfer data. UDP just blasts away without any formal pre-
liminaries. Thus UDP does not introduce any delay to establish a connection. This
is probably the principal reason why DNS runs over UDP rather than TCP—DNS
would be much slower if it ran over TCP. HTTP uses TCP rather than UDP, since
reliability is critical for Web pages with text. But, as we briefly discussed in Sec-
tion 2.2, the TCP connection-establishment delay in HTTP is an important contrib-
utor to the delays associated with downloading Web documents.

* No connection state. TCP maintains connection state in the end systems. This
connection state includes receive and send buffers, congestion-control parame-
ters, and sequence and acknowledgment number parameters. We will see in Sec-
tion 3.5 that this state information is needed to implement TCP’s reliable data
transfer service and to provide congestion control. UDP, on the other hand, does
not maintain connection state and does not track any of these parameters. For this
reason, a server devoted to a particular application can typically support many
more active clients when the application runs over UDP rather than TCP.

* Small packet header overhead. The TCP segment has 20 bytes of header over-
head in every segment, whereas UDP has only 8 bytes of overhead.

Figure 3.6 lists popular Internet applications and the transport protocols that they
use. As we expect, e-mail, remote terminal access, the Web, and file transfer run over
TCP—all these applications need the reliable data transfer service of TCP. Neverthe-
less, many important applications run over UDP rather than TCP. UDP is used for RIP
routing table updates (see Section 4.6.1). Since RIP updates are sent periodically (typi-
cally every five minutes), lost updates will be replaced by more recent updates, thus
making the lost, out-of-date update useless. UDP is also used to carry network manage-
ment (SNMP; see Chapter 9) data. UDP is preferred to TCP in this case, since network
management applications must often run when the network is in a stressed state—pre-
cisely when reliable, congestion-controlled data transfer is difficult to achieve. Also,
as we mentioned earlier, DNS runs over UDP, thereby avoiding TCP’s connection-
establishment delays.

As shown in Figure 3.6, both UDP and TCP are used today with multimedia
applications, such as Internet phone, real-time video conferencing, and streaming of
stored audio and video. We’ll take a close look at these applications in Chapter 7. We
just mention now that all of these applications can tolerate a small amount of packet
loss, so that reliable data transfer is not absolutely critical for the application’s suc-
cess. Furthermore, real-time applications, like Internet phone and video conferenc-
ing, react very poorly to TCP’s congestion control. For these reasons, developers of
multimedia applications may choose to run their applications over UDP instead of
TCP. However, TCP is increasingly being used for streaming media transport. For
example, [Sripanidkulchai 2004] found that nearly 75% of on-demand and live
streaming used TCP. When packet loss rates are low, and with some organizations

3.3

CONNECTIONLESS TRANSPORT: UDP

Application-Layer

Underlying Transport

Application Protocol Protocol
Electronic mail SMTP TCP

Remote terminal access Telnet TCP

Web HTTP TCP

File fransfer FTP TCP

Remote file server NFS Typically UDP
Streaming multimedia typically proprietary UDP or TCP
Internet telephony typically proprietary UDP or TCP
Network management SNMP Typically UDP
Routing protocol RIP Typically UDP
Name translation DNS Typically UDP

Figure 3.6 ¢ Popular Internet applications and their underlying transport
protocols

blocking UDP traffic for security reasons (see Chapter 8), TCP becomes an increas-
ingly attractive protocol for streaming media transport.

Although commonly done today, running multimedia applications over UDP is
controversial. As we mentioned above, UDP has no congestion control. But conges-
tion control is needed to prevent the network from entering a congested state in
which very little useful work is done. If everyone were to start streaming high-bit-
rate video without using any congestion control, there would be so much packet
overflow at routers that very few UDP packets would successfully traverse the
source-to-destination path. Moreover, the high loss rates induced by the uncon-
trolled UDP senders would cause the TCP senders (which, as we’ll see, do decrease
their sending rates in the face of congestion) to dramatically decrease their rates.
Thus, the lack of congestion control in UDP can result in high loss rates between a
UDP sender and receiver, and the crowding out of TCP sessions—a potentially seri-
ous problem [Floyd 1999]. Many researchers have proposed new mechanisms to
force all sources, including UDP sources, to perform adaptive congestion control
[Mahdavi 1997; Floyd 2000; Kohler 2006: RFC 4340].

Before discussing the UDP segment structure, we mention that it is possible for
an application to have reliable data transfer when using UDP. This can be done if reli-
ability is built into the application itself (for example, by adding acknowledgment
and retransmission mechanisms, such as those we’ll study in the next section). But
this is a nontrivial task that would keep an application developer busy debugging for

213

214

CHAPTER 3

* TRANSPORT LAYER

a long time. Nevertheless, building reliability directly into the application allows the
application to “have its cake and eat it too.” That is, application processes can com-
municate reliably without being subjected to the transmission-rate constraints
imposed by TCP’s congestion-control mechanism.

3.3.1 UDP Segment Structure

The UDP segment structure, shown in Figure 3.7, is defined in RFC 768. The appli-
cation data occupies the data field of the UDP segment. For example, for DNS, the
data field contains either a query message or a response message. For a streaming
audio application, audio samples fill the data field. The UDP header has only four
fields, each consisting of two bytes. As discussed in the previous section, the port
numbers allow the destination host to pass the application data to the correct process
running on the destination end system (that is, to perform the demultiplexing func-
tion). The checksum is used by the receiving host to check whether errors have been
introduced into the segment. In truth, the checksum is also calculated over a few of
the fields in the IP header in addition to the UDP segment. But we ignore this detail
in order to see the forest through the trees. We’ll discuss the checksum calculation
below. Basic principles of error detection are described in Section 5.2. The length
field specifies the length of the UDP segment, including the header, in bytes.

3.3.2 UDP Checksum

The UDP checksum provides for error detection. That is, the checksum is used to
determine whether bits within the UDP segment have been altered (for example, by
noise in the links or while stored in a router) as it moved from source to destination.
UDP at the sender side performs the 1s complement of the sum of all the 16-bit
words in the segment, with any overflow encountered during the sum being
wrapped around. This result is put in the checksum field of the UDP segment. Here
we give a simple example of the checksum calculation. You can find details about

32 bits
\

Source port # Dest. port #

Length Checksum

Application
data
(message)

Figure 3.7 ¢ UDP segment structure

3.3 '« CONNECTIONLESS TRANSPORT: UDP

efficient implementation of the calculation in RFC 1071 and performance over real
data in [Stone 1998; Stone 2000]. As an example, suppose that we have the follow-
ing three 16-bit words:

0110011001100000
0101010101010101
1000111100001100

The sum of first two of these 16-bit words is
0110011001100000

0101010101010101
1011101110110101

Adding the third word to the above sum gives

1011101110110101
1000111100001100
0100101011000010

Note that this last addition had overflow, which was wrapped around. The 1s com-
plement is obtained by converting all the Os to 1s and converting all the 1s to Os.
Thus the 1s complement of the sum 0100101011000010 is 1011010100111101,
which becomes the checksum. At the receiver, all four 16-bit words are added,
including the checksum. If no errors are introduced into the packet, then clearly the
sum at the receiver will be 1111111111111111. If one of the bits is a 0, then we know
that errors have been introduced into the packet.

You may wonder why UDP provides a checksum in the first place, as many
link-layer protocols (including the popular Ethernet protocol) also provide error
checking. The reason is that there is no guarantee that all the links between source
and destination provide error checking; that is, one of the links may use a link-layer
protocol that does not provide error checking. Furthermore, even if segments are
correctly transferred across a link, it’s possible that bit errors could be introduced
when a segment is stored in a router’s memory. Given that neither link-by-link relia-
bility nor in-memory error detection is guaranteed, UDP must provide error detec-
tion at the transport layer, on an end-end basis, if the end-end data transfer service
is to provide error detection. This is an example of the celebrated end-end princi-
ple in system design [Saltzer 1984], which states that since certain functionality
(error detection, in this case) must be implemented on an end-end basis: “functions
placed at the lower levels may be redundant or of little value when compared to the
cost of providing them at the higher level.”

Because IP is supposed to run over just about any layer-2 protocol, it is useful
for the transport layer to provide error checking as a safety measure. Although UDP

215

216

CHAPTER 3

* TRANSPORT LAYER

provides error checking, it does not do anything to recover from an error. Some
implementations of UDP simply discard the damaged segment; others pass the dam-
aged segment to the application with a warning.

That wraps up our discussion of UDP. We will soon see that TCP offers reliable
data transfer to its applications as well as other services that UDP doesn’t offer. Natu-
rally, TCP is also more complex than UDP. Before discussing TCP, however, it will be
useful to step back and first discuss the underlying principles of reliable data transfer.

3.4 Principles of Reliable Data Transfer

In this section, we consider the problem of reliable data transfer in a general con-
text. This is appropriate since the problem of implementing reliable data transfer
occurs not only at the transport layer, but also at the link layer and the application
layer as well. The general problem is thus of central importance to networking.
Indeed, if one had to identify a “top-ten” list of fundamentally important problems
in all of networking, this would be a candidate to lead the list. In the next section
we’ll examine TCP and show, in particular, that TCP exploits many of the principles
that we are about to describe.

Figure 3.8 illustrates the framework for our study of reliable data transfer. The
service abstraction provided to the upper-layer entities is that of a reliable channel
through which data can be transferred. With a reliable channel, no transferred data
bits are corrupted (flipped from O to 1, or vice versa) or lost, and all are delivered in
the order in which they were sent. This is precisely the service model offered by
TCP to the Internet applications that invoke it.

It is the responsibility of a reliable data transfer protocol to implement this
service abstraction. This task is made difficult by the fact that the layer below the
reliable data transfer protocol may be unreliable. For example, TCP is a reliable data
transfer protocol that is implemented on top of an unreliable (IP) end-to-end net-
work layer. More generally, the layer beneath the two reliably communicating end
points might consist of a single physical link (as in the case of a link-level data
transfer protocol) or a global internetwork (as in the case of a transport-level proto-
col). For our purposes, however, we can view this lower layer simply as an unreli-
able point-to-point channel.

In this section, we will incrementally develop the sender and receiver sides of a
reliable data transfer protocol, considering increasingly complex models of the under-
lying channel. Figure 3.8(b) illustrates the interfaces for our data transfer protocol. The
sending side of the data transfer protocol will be invoked from above by a call to
rdt_send (). It will pass the data to be delivered to the upper layer at the receiving
side. (Here rdt stands for reliable data transfer protocol and _send indicates that the
sending side of rdt is being called. The first step in developing any protocol is to
choose a good name!) On the receiving side, rdt_rcv () will be called when a packet

3.4 « PRINCIPLES OF RELIABLE DATA TRANSFER 217

i
N
N

Sending Receiver
Application process process

layer r' YN
-l -
v
-y 4
| rdt_send () | B0 deliver data | [0
v
Transport a Reliable data Reliable data
layer — — transfer protocol transfer protocol
aemmmm— (sending side) (receiving side)
Reliable channel = y—y
udt_send () |- rdt _rcv () l-
_______________________________ A
____________________ y W 4
Network [
layer A—
Unreliable channel
l : [:
a. Provided service b. Service implementation

Key:
Data [0 Packet

Figure 3.8 ¢ Reliable data transfer: Service model and service
implementation

arrives from the receiving side of the channel. When the rdt protocol wants to deliver
data to the upper layer, it will do so by calling deliver_data(). In the following
we use the terminology “packet” rather than transport-layer “segment.” Because the
theory developed in this section applies to computer networks in general and not just to
the Internet transport layer, the generic term “packet” is perhaps more appropriate here.

In this section we consider only the case of unidirectional data transfer, that is,
data transfer from the sending to the receiving side. The case of reliable bidirectional
(that is, full-duplex) data transfer is conceptually no more difficult but considerably
more tedious to explain. Although we consider only unidirectional data transfer, it is
important to note that the sending and receiving sides of our protocol will nonetheless
need to transmit packets in both directions, as indicated in Figure 3.8. We will see
shortly that, in addition to exchanging packets containing the data to be transferred, the
sending and receiving sides of rdt will also need to exchange control packets back and

218

CHAPTER 3

* TRANSPORT LAYER

forth. Both the send and receive sides of rdt send packets to the other side by a call to
udt_send() (where udt stands for unreliable data transfer).

3.4.1 Building a Reliable Data Transfer Protocol

We now step through a series of protocols, each one becoming more complex, arriv-
ing at a flawless, reliable data transfer protocol.

Reliable Data Transfer over a Perfectly Reliable Channel: rdt1.0

We first consider the simplest case, in which the underlying channel is completely
reliable. The protocol itself, which we’ll call rdt1.O0, is trivial. The finite-state
machine (FSM) definitions for the rdt1.0 sender and receiver are shown in
Figure 3.9. The FSM in Figure 3.9(a) defines the operation of the sender, while the
FSM in Figure 3.9(b) defines the operation of the receiver. It is important to note
that there are separate FSMs for the sender and for the receiver. The sender and
receiver FSMs in Figure 3.9 each have just one state. The arrows in the FSM
description indicate the transition of the protocol from one state to another. (Since
each FSM in Figure 3.9 has just one state, a transition is necessarily from the one
state back to itself; we’ll see more complicated state diagrams shortly.) The event
causing the transition is shown above the horizontal line labeling the transition, and

Wait for rdt_send (data)

call from packet=make pkt (data)
above udt_send (packet)

a. rdt1.0: sending side

A
. k
Wait for rdt_rcv (packet)
call from extract (packet,data)
below deliver_data(data)

b. rdt1.0: receiving side

Figure 3.9 ¢ rdt1.0 - A protocol for a completely reliable channel

3.4 « PRINCIPLES OF RELIABLE DATA TRANSFER

the actions taken when the event occurs are shown below the horizontal line. When
no action is taken on an event, or no event occurs and an action is taken, we’ll use
the symbol A below or above the horizontal, respectively, to explicitly denote the
lack of an action or event. The initial state of the FSM is indicated by the dashed
arrow. Although the FSMs in Figure 3.9 have but one state, the FSMs we will see
shortly have multiple states, so it will be important to identify the initial state of
each FSM.

The sending side of rdt simply accepts data from the upper layer via the
rdt_send(data) event, creates a packet containing the data (via the action
make pkt(data)) and sends the packet into the channel. In practice, the
rdt_send(data) event would result from a procedure call (for example, to
rdt_send()) by the upper-layer application.

On the receiving side, rdt receives a packet from the underlying channel via
the rdt_rcv(packet) event, removes the data from the packet (via the action
extract (packet, data)) and passes the data up to the upper layer (via the
action deliver data(data)). In practice, the rdt rcv(packet) event
would result from a procedure call (for example, to rdt_rcv()) from the lower-
layer protocol.

In this simple protocol, there is no difference between a unit of data and a
packet. Also, all packet flow is from the sender to receiver; with a perfectly reliable
channel there is no need for the receiver side to provide any feedback to the sender
since nothing can go wrong! Note that we have also assumed that the receiver is able
to receive data as fast as the sender happens to send data. Thus, there is no need for
the receiver to ask the sender to slow down!

Reliable Data Transfer over a Channel with Bit Errors: rdt2.0

A more realistic model of the underlying channel is one in which bits in a packet
may be corrupted. Such bit errors typically occur in the physical components of a
network as a packet is transmitted, propagates, or is buffered. We’ll continue to
assume for the moment that all transmitted packets are received (although their bits
may be corrupted) in the order in which they were sent.

Before developing a protocol for reliably communicating over such a channel,
first consider how people might deal with such a situation. Consider how you your-
self might dictate a long message over the phone. In a typical scenario, the message
taker might say “OK” after each sentence has been heard, understood, and recorded.
If the message taker hears a garbled sentence, you’re asked to repeat the garbled
sentence. This message-dictation protocol uses both positive acknowledgments
(“OK”) and negative acknowledgments (“Please repeat that.”). These control mes-
sages allow the receiver to let the sender know what has been received correctly, and
what has been received in error and thus requires repeating. In a computer network
setting, reliable data transfer protocols based on such retransmission are known as
ARQ (Automatic Repeat reQuest) protocols.

219

* TRANSPORT LAYER

Fundamentally, three additional protocol capabilities are required in ARQ
protocols to handle the presence of bit errors:

e Error detection. First, a mechanism is needed to allow the receiver to detect
when bit errors have occurred. Recall from the previous section that UDP uses
the Internet checksum field for exactly this purpose. In Chapter 5 we’ll exam-
ine error-detection and -correction techniques in greater detail; these tech-
niques allow the receiver to detect and possibly correct packet bit errors. For
now, we need only know that these techniques require that extra bits (beyond
the bits of original data to be transferred) be sent from the sender to the
receiver; these bits will be gathered into the packet checksum field of the
rdt2.0 data packet.

* Receiver feedback. Since the sender and receiver are typically executing on differ-
ent end systems, possibly separated by thousands of miles, the only way for the
sender to learn of the receiver’s view of the world (in this case, whether or not a
packet was received correctly) is for the receiver to provide explicit feedback to the
sender. The positive (ACK) and negative (NAK) acknowledgment replies in the
message-dictation scenario are examples of such feedback. Our rdt2 . 0 protocol
will similarly send ACK and NAK packets back from the receiver to the sender. In
principle, these packets need only be one bit long; for example, a 0 value could indi-
cate a NAK and a value of 1 could indicate an ACK.

* Retransmission. A packet that is received in error at the receiver will be retrans-
mitted by the sender.

Figure 3.10 shows the FSM representation of rdt2 .0, a data transfer protocol
employing error detection, positive acknowledgments, and negative acknowledgments.

The send side of rdt2 . 0 has two states. In the leftmost state, the send-side proto-
col is waiting for data to be passed down from the upper layer. When the
rdt_send(data) event occurs, the sender will create a packet (sndpkt)
containing the data to be sent, along with a packet checksum (for example, as discussed
in Section 3.3.2 for the case of a UDP segment), and then send the packet via the
udt_send(sndpkt) operation. In the rightmost state, the sender protocol is wait-
ing for an ACK or a NAK packet from the receiver. If an ACK packet is received (the
notation rdt_rcv(rcvpkt) && isACK (rcvpkt) in Figure 3.10 corresponds
to this event), the sender knows that the most recently transmitted packet has been
received correctly and thus the protocol returns to the state of waiting for data from the
upper layer. If a NAK is received, the protocol retransmits the last packet and waits for
an ACK or NAK to be returned by the receiver in response to the retransmitted data
packet. It is important to note that when the sender is in the wait-for-ACK-or-NAK
state, it cannot get more data from the upper layer; that is, the rdt_send () event can
not occur; that will happen only after the sender receives an ACK and leaves this state.
Thus, the sender will not send a new piece of data until it is sure that the receiver has

3.4 « PRINCIPLES OF RELIABLE DATA TRANSFER

rdt_send (data)

sndpkt=make_pkt (data, checksum)
udt_send (sndpkt)

~
~
~

Wait for Wait for rdt_rcv (rcvpkt) && isNAK (rcvpkt)

call from ACK or udt_send (sndpkt)
above NAK -

"~

rdt_rcv (rcvpkt) && isACK (rcvpkt)
A

a. rdt2.0: sending side

rdt_rcv (rcvpkt) && corrupt (rcvpkt)

sndpkt=make_pkt (NAK)
~
RN udt_send (sndpkt)
~

Wait for
call from
below

U rdt_rcv(rcvpkt) && notcorrupt (rcvpkt)

extract (rcvpkt,data)
deliver data(data)
sndpkt=make_pkt (ACK)
udt_send (sndpkt)

b. rdt2.0: receiving side

Figure 3.10 ¢ rdt2.0-A protocol for a channel with bit errors

correctly received the current packet. Because of this behavior, protocols such as
rdt2.0 are known as stop-and-wait protocols.

The receiver-side FSM for rdt2. 0 still has a single state. On packet arrival,
the receiver replies with either an ACK or a NAK, depending on whether or not the
received packet is corrupted. In Figure 3.10, the notation rdt_rcv(rcvpkt) &&
corrupt (rcvpkt) corresponds to the event in which a packet is received and is
found to be in error.

Protocol rdt2.0 may look as if it works but, unfortunately, it has a fatal
flaw. In particular, we haven’t accounted for the possibility that the ACK or NAK
packet could be corrupted! (Before proceeding on, you should think about how this

221

222

CHAPTER 3

* TRANSPORT LAYER

problem may be fixed.) Unfortunately, our slight oversight is not as innocuous as it
may seem. Minimally, we will need to add checksum bits to ACK/NAK packets in
order to detect such errors. The more difficult question is how the protocol should
recover from errors in ACK or NAK packets. The difficulty here is that if an ACK
or NAK is corrupted, the sender has no way of knowing whether or not the receiver
has correctly received the last piece of transmitted data.

Consider three possibilities for handling corrupted ACKs or NAKSs:

* For the first possibility, consider what a human might do in the message-
dictation scenario. If the speaker didn’t understand the “OK” or “Please repeat
that” reply from the receiver, the speaker would probably ask, “What did you
say?” (thus introducing a new type of sender-to-receiver packet to our protocol).
The speaker would then repeat the reply. But what if the speaker’s “What did you
say?” is corrupted? The receiver, having no idea whether the garbled sentence
was part of the dictation or a request to repeat the last reply, would probably then
respond with “What did you say?” And then, of course, that response might be
garbled. Clearly, we’re heading down a difficult path.

* A second alternative is to add enough checksum bits to allow the sender not only
to detect, but also to recover from, bit errors. This solves the immediate problem
for a channel that can corrupt packets but not lose them.

* A third approach is for the sender simply to resend the current data packet when
it receives a garbled ACK or NAK packet. This approach, however, introduces
duplicate packets into the sender-to-receiver channel. The fundamental diffi-
culty with duplicate packets is that the receiver doesn’t know whether the ACK
or NAK it last sent was received correctly at the sender. Thus, it cannot know a
priori whether an arriving packet contains new data or is a retransmission!

A simple solution to this new problem (and one adopted in almost all existing
data transfer protocols, including TCP) is to add a new field to the data packet and
have the sender number its data packets by putting a sequence number into this
field. The receiver then need only check this sequence number to determine whether
or not the received packet is a retransmission. For this simple case of a stop-and-
wait protocol, a 1-bit sequence number will suffice, since it will allow the receiver
to know whether the sender is resending the previously transmitted packet (the
sequence number of the received packet has the same sequence number as the most
recently received packet) or a new packet (the sequence number changes, moving
“forward” in modulo-2 arithmetic). Since we are currently assuming a channel that
does not lose packets, ACK and NAK packets do not themselves need to indicate
the sequence number of the packet they are acknowledging. The sender knows that
a received ACK or NAK packet (whether garbled or not) was generated in response
to its most recently transmitted data packet.

3.4 « PRINCIPLES OF RELIABLE DATA TRANSFER 223

Figures 3.11 and 3.12 show the FSM description for rdt2. 1, our fixed version
of rdt2.0. The rdt2. 1 sender and receiver FSMs each now have twice as many
states as before. This is because the protocol state must now reflect whether the packet
currently being sent (by the sender) or expected (at the receiver) should have a
sequence number of O or 1. Note that the actions in those states where a 0-numbered
packet is being sent or expected are mirror images of those where a 1-numbered
packet is being sent or expected; the only differences have to do with the handling of
the sequence number.

Protocol rdt2. 1 uses both positive and negative acknowledgments from the
receiver to the sender. When an out-of-order packet is received, the receiver sends a
positive acknowledgment for the packet it has received. When a corrupted packet is
received, the receiver sends a negative acknowledgment. We can accomplish the
same effect as a NAK if, instead of sending a NAK, we send an ACK for the last
correctly received packet. A sender that receives two ACKs for the same packet (that
is, receives duplicate ACKs) knows that the receiver did not correctly receive the
packet following the packet that is being ACKed twice. Our NAK-free reliable data

rdt_send(data)

sndpkt=make_pkt (0,data, checksum)
udt_send (sndpkt)

rdt_rcv (rcvpkt) &&
~
AN (corrupt (rcvpkt) | |
~

~ - 1sNAK (rcvpkt))
Wait for Wait for udt_send (sndpkt)
call 0 from ACK or
above NAK 0
rdt_rcv (rcvpkt) rdt_rcv (rcvpkt)
&& notcorrupt (rcvpkt) && notcorrupt (rcvpkt)
&& 1sACK (rcvpkt) && 1sACK (rcvpkt)
A A
Wait for Wait for
ACK or call 1 from
NAK 1 above
rdt_rcv (rcvpkt) &&
(corrupt (rcvpkt) | |
i1sNAK (rcvpkt))
udt_send (sndpkt) rdt_send (data)

sndpkt=make_pkt (1,data, checksum)
udt_send (sndpkt)

Figure 3.11 ¢ rdt2.1 sender

224 CHAPTER 3

rdt_rcv (rcvpkt)
&& corrupt (rcvpkt)

* TRANSPORT LAYER

rdt_rcv (rcvpkt) && notcorrupt (rcvpkt)
&& has_seq0 (rcvpkt)

extract (rcvpkt,data)
deliver data(data)
sndpkt=make_ pkt (ACK, checksum)

udt_send (sndpkt) rdt rcv(rcvpkt) && corrupt (rcvpkt)

m sndpkt=make_pkt (NAK, checksum)
sndpkt=make pkt (NAK, checksum) X udt_send (sndpkt)

udt_send (sndpkt)

: Wait for Wait for ;

0 from 1 from

sndpkt=make_pkt (ACK, checksum)

udt_send (sndpkt)

sndpkt=make pkt (ACK, checksum)

rdt_rcv(rcvpkt) && notcorrupt below below
(rcvpkt) &&has_seql (rcvpkt) rdt_rcv (rcvpkt) && notcorrupt
\/ (rcvpkt) &&has_seq0 (rcvpkt)

udt_send (sndpkt)

rdt_rcv (rcvpkt) && notcorrupt (rcvpkt)
&& has_seql (rcvpkt)

extract (rcvpkt,data)

deliver data(data)
sndpkt=make_pkt (ACK, checksum)
udt_send (sndpkt)

Figure 3.12 ¢ rdt2.1 receiver

transfer protocol for a channel with bit errors is rdt2 . 2, shown in Figures 3.13 and
3.14. One subtle change between rtdt2.1 and rdt2. 2 is that the receiver must
now include the sequence number of the packet being acknowledged by an ACK
message (this is done by including the ACK,0 or ACK,1 argument in make pkt()
in the receiver FSM), and the sender must now check the sequence number of the
packet being acknowledged by a received ACK message (this is done by including
the 0 or 1 argument in 1sACK()in the sender FSM).

Reliable Data Transfer over a Lossy Channel with Bit Errors: rdt3.0

Suppose now that in addition to corrupting bits, the underlying channel can lose
packets as well, a not-uncommon event in today’s computer networks (including the
Internet). Two additional concerns must now be addressed by the protocol: how to
detect packet loss and what to do when packet loss occurs. The use of checksum-
ming, sequence numbers, ACK packets, and retransmissions—the techniques
already developed in rdt2 .2—will allow us to answer the latter concern. Han-
dling the first concern will require adding a new protocol mechanism.

There are many possible approaches toward dealing with packet loss (several
more of which are explored in the exercises at the end of the chapter). Here, we’ll
put the burden of detecting and recovering from lost packets on the sender. Suppose

3.4 « PRINCIPLES OF RELIABLE DATA TRANSFER 225

rdt_send (data)

sndpkt=make_pkt (0,data, checksum)
udt_send (sndpkt)

rdt_rcv (rcvpkt) &&
~
~o (corrupt (rcvpkt) | |
~

I 1sACK (rcvpkt, 1))
Wait for . dt d (sndpkt
call 0 from Wait for narsendlandpre)
above ACKO
rdt_rcv (rcvpkt) rdt_rcv (rcvpkt)
&& notcorrupt (revpkt) && notcorrupt (rcvpkt)
&& 1isACK (rcvpkt, 1) && 1sACK (rcvpkt, 0)
A A
. Wait for
V\fc'f(f;)r call 1 from
above

rdt_rcv(rcvpkt) &&
(corrupt (rcvpkt) | |
isACK (rcvpkt,0))

rdt_send (data)

udt_send (sndpkt)

sndpkt=make_pkt (1,data, checksum)
udt_send (sndpkt)

Figure 3.13 ¢ rdt2.2 sender

that the sender transmits a data packet and either that packet, or the receiver’s ACK
of that packet, gets lost. In either case, no reply is forthcoming at the sender from
the receiver. If the sender is willing to wait long enough so that it is certain that a
packet has been lost, it can simply retransmit the data packet. You should convince
yourself that this protocol does indeed work.

But how long must the sender wait to be certain that something has been lost?
The sender must clearly wait at least as long as a round-trip delay between the
sender and receiver (which may include buffering at intermediate routers) plus
whatever amount of time is needed to process a packet at the receiver. In many net-
works, this worst-case maximum delay is very difficult even to estimate, much less
know with certainty. Moreover, the protocol should ideally recover from packet
loss as soon as possible; waiting for a worst-case delay could mean a long wait
until error recovery is initiated. The approach thus adopted in practice is for the
sender to judiciously choose a time value such that packet loss is likely, although
not guaranteed, to have happened. If an ACK is not received within this time, the
packet is retransmitted. Note that if a packet experiences a particularly large delay,
the sender may retransmit the packet even though neither the data packet nor its
ACK have been lost. This introduces the possibility of duplicate data packets in

226

CHAPTER 3 ' TRANSPORT LAYER
rdt_rcv (rcvpkt) && notcorrupt (rcvpkt)
&& has_seq0 (rcvpkt)
extract (rcvpkt,data)
deliver data(data)
sndpkt=make_pkt (ACK, 0, checksum)
A udt_send (sndpkt)
oncethru=0 oncethru=1
\\ /\
N
N
N
Y
rdt_rcv (rcvpkt) && rdt_rcv(rcvpkt) &&
(corrupt (rcvpkt) | | Wait for Wait for (corrupt (rcvpkt) | |
has_seql (rcvpkt)) 0 from 1 from has_seq0 (rcvpkt)
below below

if (oncethru==1)
udt_send (sndpkt)

udt_send (sndpkt)

"~

rdt_rcv(rcvpkt) && notcorrupt (rcvpkt)
&& has_seql (rcvpkt)

extract (rcvpkt,data)

deliver data(data)
sndpkt=make_pkt (ACK, 1, checksum)
udt_send (sndpkt)

Figure 3.14 ¢ rdt2.2 receiver

the sender-to-receiver channel. Happily, protocol rdt2.2 already has enough
functionality (that is, sequence numbers) to handle the case of duplicate packets.

From the sender’s viewpoint, retransmission is a panacea. The sender does not
know whether a data packet was lost, an ACK was lost, or if the packet or ACK was
simply overly delayed. In all cases, the action is the same: retransmit. Implementing
a time-based retransmission mechanism requires a countdown timer that can
interrupt the sender after a given amount of time has expired. The sender will thus
need to be able to (1) start the timer each time a packet (either a first-time packet or
a retransmission) is sent, (2) respond to a timer interrupt (taking appropriate
actions), and (3) stop the timer.

Figure 3.15 shows the sender FSM for rdt3. 0, a protocol that reliably transfers
data over a channel that can corrupt or lose packets; in the homework problems, you’ll
be asked to provide the receiver FSM for rdt 3. 0. Figure 3.16 shows how the proto-
col operates with no lost or delayed packets and how it handles lost data packets. In
Figure 3.16, time moves forward from the top of the diagram toward the bottom of the
diagram; note that a receive time for a packet is necessarily later than the send time
for a packet as a result of transmission and propagation delays. In Figures 3.16(b)—(d),
the send-side brackets indicate the times at which a timer is set and later times out.
Several of the more subtle aspects of this protocol are explored in the exercises at the
end of this chapter. Because packet sequence numbers alternate between 0 and 1, pro-
tocol rdt3.0 is sometimes known as the alternating-bit protocol.

3.4 « PRINCIPLES OF RELIABLE DATA TRANSFER 227

rdt_send (data)

sndpkt=make_pkt (0,data, checksum)
udt_send (sndpkt) rdt_rcv (rcvpkt) &&
start_timer (corrupt (rcvpkt) | |

S 1sACK (revpkt, 1))
AN
\\ A
rdt_rcv (rcvpkt) R}
A Wait for timeout
Wait for
Qcall 0 from udt_send (sndpkt)

above ACK 0 start_timer

rdt_rcv (rcvpkt)

&& notcorrupt (rcvpkt)

&& 1sACK (rcvpkt, 1) rdt_rcv (rcvpkt)

&& notcorrupt (rcvpkt)
&& 1sACK (rcvpkt, 0)

stop_timer

timeout : Wait for
udt_send (sndpkt) V\fcl:‘:(f?r call 1 from
start_timer above

rdt_rcv (rcvpkt)
rdt_rcv (rcvpkt) && A
(corrupt (rcvpkt) | |
isACK (rcvpkt,0)) rdt send (data)
A

stop_timer

sndpkt=make_pkt (1,data, checksum)
udt_send (sndpkt)
start_timer

Figure 3.15 ¢ rdt3.0 sender

We have now assembled the key elements of a data transfer protocol. Check-
sums, sequence numbers, timers, and positive and negative acknowledgment pack-
ets each play a crucial and necessary role in the operation of the protocol. We now
have a working reliable data transfer protocol!

3.4.2 Pipelined Reliable Data Transfer Protocols

Protocol rdt 3. 0 is a functionally correct protocol, but it is unlikely that anyone would
be happy with its performance, particularly in today’s high-speed networks. At the heart
of rdt3.0’s performance problem is the fact that it is a stop-and-wait protocol.

To appreciate the performance impact of this stop-and-wait behavior, consider
an idealized case of two hosts, one located on the West Coast of the United States
and the other located on the East Coast, as shown in Figure 3.17. The speed-of-light
round-trip propagation delay between these two end systems, RTT, is approxi-
mately 30 milliseconds. Suppose that they are connected by a channel with a trans-
mission rate, R, of 1 Gbps (10° bits per second). With a packet size, L, of 1,000 bytes

228 CHAPTER 3 e
Sender
send pkto0 Pktg

rcv ACKO
send pktl

rcv ACK1
send pkto

f

pC

\

Pkt

/

po

\

Pkto

/

pS

\

a. Operation with no loss

Sender

send pktoO

rcv ACKO
send pktl

timeout
resend pktl

rcv ACK1
send pktO

¢. Lost ACK

Pkt

/

pC

\

bktq

/

¢

(loss) X
pkti

/

p

\

Pkto

/

pC

\

TRANSPORT LAYER

Receiver

rcv pkto
send ACKO

rcv pktl
send ACK1

rcv pkto
send ACKO

Receiver

rcv pkto
send ACKO

rcv pktl
send ACK1

rcv pktl
(detect
duplicate)
send ACK1

rcv pkto
send ACKO

Sender

send pkto

rcv ACKO
send pktl

timeout
resend pktl

rcv ACK1
send pkto

b. Lost packet

Sender

send pktoO

rcv ACKO

send pktl
timeout[

resend pktl

rcv ACK1
send pktoO

rcv ACK1
do nothing

Pkto

/

O

Pktq

/

X (loss)

Pktq

/

e

/\

kto

pS

X

Pkto

/

o

,
*

Pkty

/

P

~
~

MY

o

Pkto S

e

\

d. Premature timeout

Receiver

rcv pkto
send ACKO

rcv pktl
send ACK1

rcv pkto
send ACKO

Receiver

rcv pkto
send ACKO

rcv pktl
send ACKL

rcv pkt 1
(detect duplicate)
send ACKL

rcv pkto
send ACKO

Figure 3.16 ¢ Operation of rdt3.0, the alternating-bit protocol

3.4 « PRINCIPLES OF RELIABLE DATA TRANSFER

Data packet Data packets

WiV —

—

ACK packets

l— N N\ ¥ D

a. A stop-and-wait protocol in operation b. A pipelined protocol in operation

Figure 3.17 ¢ Stop-and-wait versus pipelined protocol

(8,000 bits) per packet, including both header fields and data, the time needed to
actually transmit the packet into the 1 Gbps link is

L 8000 bits/packet

— T = 8 microseconds
R 10" bits/sec

trans —

Figure 3.18(a) shows that with our stop-and-wait protocol, if the sender begins
sending the packet at = 0, then at # = L/R = 8 microseconds, the last bit enters the
channel at the sender side. The packet then makes its 15-msec cross-country jour-
ney, with the last bit of the packet emerging at the receiver at t = RTT/2 + L/R =
15.008 msec. Assuming for simplicity that ACK packets are extremely small (so that
we can ignore their transmission time) and that the receiver can send an ACK as
soon as the last bit of a data packet is received, the ACK emerges back at the sender
at = RTT + L/R = 30.008 msec. At this point, the sender can now transmit the next
message. Thus, in 30.008 msec, the sender was sending for only 0.008 msec. If we
define the utilization of the sender (or the channel) as the fraction of time the sender
is actually busy sending bits into the channel, the analysis in Figure 3.18(a) shows

that the stop-and-wait protocol has a rather dismal sender utilization, U_,_ .., of

L/R 008

Uyger = = =0.00027
RTT+L/R 30.008

That is, the sender was busy only 2.7 hundredths of one percent of the time!
Viewed another way, the sender was able to send only 1,000 bytes in 30.008 mil-
liseconds, an effective throughput of only 267 kbps—even though a 1 Gbps link was
available! Imagine the unhappy network manager who just paid a fortune for a giga-
bit capacity link but manages to get a throughput of only 267 kilobits per second!
This is a graphic example of how network protocols can limit the capabilities

229

230

CHAPTER 3

* TRANSPORT LAYER

provided by the underlying network hardware. Also, we have neglected lower-layer
protocol-processing times at the sender and receiver, as well as the processing and
queuing delays that would occur at any intermediate routers between the sender
and receiver. Including these effects would serve only to further increase the delay
and further accentuate the poor performance.

The solution to this particular performance problem is simple: Rather than oper-
ate in a stop-and-wait manner, the sender is allowed to send multiple packets with-
out waiting for acknowledgments, as illustrated in Figure 3.17(b). Figure 3.18(b)
shows that if the sender is allowed to transmit three packets before having to wait
for acknowledgments, the utilization of the sender is essentially tripled. Since the
many in-transit sender-to-receiver packets can be visualized as filling a pipeline, this
technique is known as pipelining. Pipelining has the following consequences for
reliable data transfer protocols:

* The range of sequence numbers must be increased, since each in-transit packet
(not counting retransmissions) must have a unique sequence number and there
may be multiple, in-transit, unacknowledged packets.

* The sender and receiver sides of the protocols may have to buffer more than one
packet. Minimally, the sender will have to buffer packets that have been trans-
mitted but not yet acknowledged. Buffering of correctly received packets may
also be needed at the receiver, as discussed below.

* The range of sequence numbers needed and the buffering requirements will
depend on the manner in which a data transfer protocol responds to lost, cor-
rupted, and overly delayed packets. Two basic approaches toward pipelined error
recovery can be identified: Go-Back-N and selective repeat.

3.4.3 Go-Back-N (GBN)

In a Go-Back-N (GBN) protocol, the sender is allowed to transmit multiple packets
(when available) without waiting for an acknowledgment, but is constrained to have no
more than some maximum allowable number, N, of unacknowledged packets in the
pipeline. We describe the GBN protocol in some detail in this section. But before read-
ing on, you are encouraged to play with the GBN applet (an awesome applet!) at the
companion Web site.

Figure 3.19 shows the sender’s view of the range of sequence numbers in a GBN
protocol. If we define base to be the sequence number of the oldest unacknowledged
packet and nextseqgnum to be the smallest unused sequence number (that is, the
sequence number of the next packet to be sent), then four intervals in the range of
sequence numbers can be identified. Sequence numbers in the interval [0, base-1]
correspond to packets that have already been transmitted and acknowledged. The inter-
val [base,nextseqnum-1] corresponds to packets that have been sent but not yet
acknowledged. Sequence numbers in the interval [nextseqgnum,base+N-1] can

3.4 « PRINCIPLES OF RELIABLE DATA TRANSFER 231

Sender Receiver
|/ |/
First bit of first packet — —

transmitted, t =0
Last bit of first packet
transmitted, t = L/R
— First bit of first packet arrives

RTT — Last bit of first packet arrives, send ACK

ACK arrives, send next packet,—
t=RTT+ LR

a. Stop-and-wait operation

Sender Receiver
Q -
First bit of first packet = —

transmitted, t =0

Last bit of first packet ———
transmitted, t = L/R
— First bit of first packet arrives

— Last bit of first packet arrives, send ACK
— Last bit of 2nd packet arrives, send ACK
— Last bit of 3rd packet arrives, send ACK

RTT-

ACK arrives, send next packet,—
t=RTT + L/IR

b. Pipelined operation

Figure 3.18 ¢ Stop-and-wait and pipelined sending

232 CHAPTER 3 TRANSPORT LAYER

base nextsegnum
\ | Key:
Already Usable,
ACK'd not yet sent
! ! |:|Sent not |:|
‘ P Not usable
Window size yet ACK'd
N

Figure 3.19 ¢ Sender’s view of sequence numbers in Go-Back-N

be used for packets that can be sent immediately, should data arrive from the upper
layer. Finally, sequence numbers greater than or equal to base+N cannot be used until
an unacknowledged packet currently in the pipeline (specifically, the packet with
sequence number base) has been acknowledged.

As suggested by Figure 3.19, the range of permissible sequence numbers for
transmitted but not yet acknowledged packets can be viewed as a window of size N
over the range of sequence numbers. As the protocol operates, this window slides
forward over the sequence number space. For this reason, N is often referred to as
the window size and the GBN protocol itself as a sliding-window protocol. You
might be wondering why we would even limit the number of outstanding, unac-
knowledged packets to a value of N in the first place. Why not allow an unlimited
number of such packets? We’ll see in Section 3.5 that flow control is one reason to
impose a limit on the sender. We’ll examine another reason to do so in Section 3.7,
when we study TCP congestion control.

In practice, a packet’s sequence number is carried in a fixed-length field in the
packet header. If £ is the number of bits in the packet sequence number field, the range
of sequence numbers is thus [0,2¢— 1]. With a finite range of sequence numbers, all
arithmetic involving sequence numbers must then be done using modulo 2% arithmetic.
(That is, the sequence number space can be thought of as a ring of size 2%, where
sequence number 2%~ 1 is immediately followed by sequence number 0.) Recall that
rdt3.0 had a 1-bit sequence number and a range of sequence numbers of [0,1]. Sev-
eral of the problems at the end of this chapter explore the consequences of a finite range
of sequence numbers. We will see in Section 3.5 that TCP has a 32-bit sequence number
field, where TCP sequence numbers count bytes in the byte stream rather than packets.

Figures 3.20 and 3.21 give an extended FSM description of the sender and
receiver sides of an ACK-based, NAK-free, GBN protocol. We refer to this FSM
description as an extended FSM because we have added variables (similar to pro-
gramming-language variables) for base and nextseqgnum, and added operations
on these variables and conditional actions involving these variables. Note that the
extended FSM specification is now beginning to look somewhat like a programming-
language specification. [Bochman 1984] provides an excellent survey of additional
extensions to FSM techniques as well as other programming-language-based tech-
niques for specifying protocols.

3.4 « PRINCIPLES OF RELIABLE DATA TRANSFER

rdt_send (data)

if (nextseqgnum<base+N) {
sndpkt [nextsegnum] =make_pkt (nextseqgnum, data, checksum)
udt_send (sndpkt [nextsegnum])
if (base==nextsegnum)

~ start_timer
A T~ nextseqgnum++

I

base=1 S~ }

~
nextsegnum=1 ~So else
\\\ refuse_data(data)
\\
~
~
~
~ .
Sa m timeout
A

start_timer
Wait udt_send (sndpkt [base])
udt_send (sndpkt [base+1])
rdt_rcv (rcvpkt) && corrupt (rcvpkt)

A (, udt_send (sndpkt [nextsegnum-1]

rdt_rcv (rcvpkt) && notcorrupt (rcvpkt)

base=getacknum (rcvpkt) +1
If (base==nextsegnum)
stop_timer
else
start_timer

Figure 3.20 ¢ Extended FSM description of GBN sender

rdt_rcv (rcvpkt)
&& notcorrupt (rcvpkt)
&& hassegnum (rcvpkt, expectedsegnum)

extract (rcvpkt,data)

deliver_data(data)

sndpkt=make pkt (expectedsegnum,ACK, checksum)
udt_send (sndpkt)

expectedsegnum++
. default
——————————————— > Wait _
A udt_send (sndpkt)

expectedsegnum=1
sndpkt=make_pkt (0,ACK, checksum)

Figure 3.21 ¢ Extended FSM description of GBN receiver

233

234

CHAPTER 3

* TRANSPORT LAYER

The GBN sender must respond to three types of events:

e Invocation from above. When rdt_send () is called from above, the sender
first checks to see if the window is full, that is, whether there are N outstanding,
unacknowledged packets. If the window is not full, a packet is created and sent,
and variables are appropriately updated. If the window is full, the sender simply
returns the data back to the upper layer, an implicit indication that the window is
full. The upper layer would presumably then have to try again later. In a real
implementation, the sender would more likely have either buffered (but not
immediately sent) this data, or would have a synchronization mechanism (for
example, a semaphore or a flag) that would allow the upper layer to call
rdt_send() only when the window is not full.

* Receipt of an ACK. In our GBN protocol, an acknowledgment for a packet with
sequence number n will be taken to be a cumulative acknowledgment, indicat-
ing that all packets with a sequence number up to and including n have been cor-
rectly received at the receiver. We’ll come back to this issue shortly when we
examine the receiver side of GBN.

* A timeout event. The protocol’s name, “Go-Back-N,” is derived from the sender’s
behavior in the presence of lost or overly delayed packets. As in the stop-and-wait
protocol, a timer will again be used to recover from lost data or acknowledgment
packets. If a timeout occurs, the sender resends all packets that have been previ-
ously sent but that have not yet been acknowledged. Our sender in Figure 3.20 uses
only a single timer, which can be thought of as a timer for the oldest transmitted but
not yet acknowledged packet. If an ACK is received but there are still additional
transmitted but not yet acknowledged packets, the timer is restarted. If there are no
outstanding, unacknowledged packets, the timer is stopped.

The receiver’s actions in GBN are also simple. If a packet with sequence num-
ber n is received correctly and is in order (that is, the data last delivered to the upper
layer came from a packet with sequence number n — 1), the receiver sends an ACK
for packet n and delivers the data portion of the packet to the upper layer. In all other
cases, the receiver discards the packet and resends an ACK for the most recently
received in-order packet. Note that since packets are delivered one at a time to the
upper layer, if packet k has been received and delivered, then all packets with a
sequence number lower than k have also been delivered. Thus, the use of cumula-
tive acknowledgments is a natural choice for GBN.

In our GBN protocol, the receiver discards out-of-order packets. Although it
may seem silly and wasteful to discard a correctly received (but out-of-order)
packet, there is some justification for doing so. Recall that the receiver must deliver
data in order to the upper layer. Suppose now that packet n is expected, but packet
n + 1 arrives. Because data must be delivered in order, the receiver could buffer
(save) packet n + 1 and then deliver this packet to the upper layer after it had later

3.4 « PRINCIPLES OF RELIABLE DATA TRANSFER

received and delivered packet n. However, if packet n is lost, both it and packet
n + 1 will eventually be retransmitted as a result of the GBN retransmission rule at
the sender. Thus, the receiver can simply discard packet n + 1. The advantage of this
approach is the simplicity of receiver buffering—the receiver need not buffer any
out-of-order packets. Thus, while the sender must maintain the upper and lower
bounds of its window and the position of nextsegnum within this window, the
only piece of information the receiver need maintain is the sequence number of the
next in-order packet. This value is held in the variable expectedsegnum, shown
in the receiver FSM in Figure 3.21. Of course, the disadvantage of throwing away a
correctly received packet is that the subsequent retransmission of that packet might
be lost or garbled and thus even more retransmissions would be required.

Figure 3.22 shows the operation of the GBN protocol for the case of a window
size of four packets. Because of this window size limitation, the sender sends pack-
ets 0 through 3 but then must wait for one or more of these packets to be acknowl-
edged before proceeding. As each successive ACK (for example, ACKO and ACK1)
is received, the window slides forward and the sender can transmit one new packet
(pkt4 and pkt5, respectively). On the receiver side, packet 2 is lost and thus packets
3, 4, and 5 are found to be out of order and are discarded.

Before closing our discussion of GBN, it is worth noting that an implementa-
tion of this protocol in a protocol stack would likely have a structure similar to that
of the extended FSM in Figure 3.20. The implementation would also likely be in the
form of various procedures that implement the actions to be taken in response to the
various events that can occur. In such event-based programming, the various pro-
cedures are called (invoked) either by other procedures in the protocol stack, or as
the result of an interrupt. In the sender, these events would be (1) a call from the
upper-layer entity to invoke rdt_send (), (2) a timer interrupt, and (3) a call from
the lower layer to invoke rdt_rcv () when a packet arrives. The programming
exercises at the end of this chapter will give you a chance to actually implement
these routines in a simulated, but realistic, network setting.

We note here that the GBN protocol incorporates almost all of the techniques
that we will encounter when we study the reliable data transfer components of TCP
in Section 3.5. These techniques include the use of sequence numbers, cumulative
acknowledgments, checksums, and a timeout/retransmit operation.

3.4.4 Selective Repeat (SR)

The GBN protocol allows the sender to potentially “fill the pipeline” in Figure 3.17
with packets, thus avoiding the channel utilization problems we noted with stop-
and-wait protocols. There are, however, scenarios in which GBN itself suffers from
performance problems. In particular, when the window size and bandwidth-delay
product are both large, many packets can be in the pipeline. A single packet error
can thus cause GBN to retransmit a large number of packets, many unnecessarily.
As the probability of channel errors increases, the pipeline can become filled with

235

236

CHAPTER 3

* TRANSPORT LAYER

send ACK2
rcv pkt3, deliver
send ACK3

Sender Receiver
send pkto \
rcv pkto
send pktl send ACKO
rcv pktl
—— send pkt2 send ACK1
\ X
(loss)
send pkt3
(wait)
rcv pkt3, discard
/ send ACK1
rcv ACKO
send pkt4
rcv ACK1
send pkt5 rcv pkt4, discard
/ send ACK1
— pkt2 timeout
send pkt2 rcv pkt5, discard
send pkt3 / send ACK1
send pkt4

Figure 3.22 ¢ Go-Back-N in operation

these unnecessary retransmissions. Imagine, in our message-dictation scenario, that
if every time a word was garbled, the surrounding 1,000 words (for example, a win-
dow size of 1,000 words) had to be repeated. The dictation would be slowed by all
of the reiterated words.

As the name suggests, selective-repeat protocols avoid unnecessary retransmis-
sions by having the sender retransmit only those packets that it suspects were
received in error (that is, were lost or corrupted) at the receiver. This individual, as-
needed, retransmission will require that the receiver individually acknowledge cor-
rectly received packets. A window size of N will again be used to limit the number

3.4 « PRINCIPLES OF RELIABLE DATA TRANSFER 237

IRNNRRCARONADOORORNOIIL H .

|
a. Sender view of sequence numbers
|

[
[
[
[
[
[
[
[
[
rcv_base }

‘ Key:
Out of order Acceptable
(buffered) but (within
already ACK'd window)
| J
‘ Expected, not
Window size |:| nyfechivego |:| Not usable

N
b. Receiver view of sequence numbers

Figure 3.23 ¢ Selective-repeat (SR) sender and receiver views of
sequence-number space

of outstanding, unacknowledged packets in the pipeline. However, unlike GBN, the
sender will have already received ACKs for some of the packets in the window.
Figure 3.23 shows the SR sender’s view of the sequence number space. Figure 3.24
details the various actions taken by the SR sender.

The SR receiver will acknowledge a correctly received packet whether or not it
is in order. Out-of-order packets are buffered until any missing packets (that is,
packets with lower sequence numbers) are received, at which point a batch of pack-
ets can be delivered in-order to the upper layer. Figure 3.25 itemizes the various
actions taken by the SR receiver. Figure 3.26 shows an example of SR operation in
the presence of lost packets. Note that in Figure 3.26, the receiver initially buffers
packets 3, 4, and 5, and delivers them together with packet 2 to the upper layer when
packet 2 is finally received.

It is important to note that in Step 2 in Figure 3.25, the receiver reacknowledges
(rather than ignores) already received packets with certain sequence numbers below
the current window base. You should convince yourself that this reacknowledgment
is indeed needed. Given the sender and receiver sequence number spaces in Figure
3.23, for example, if there is no ACK for packet send base propagating from the
receiver to the sender, the sender will eventually retransmit packet send base,
even though it is clear (to us, not the sender!) that the receiver has already received

238

CHAPTER 3

* TRANSPORT LAYER

1. Data received from above. When data is received from above, the SR sender
checks the next available sequence number for the packet. If the sequence
number is within the sender’s window, the data is packetized and sent; other-
wise it is either buffered or returned to the upper layer for later transmission,
as in GBN.

2. Timeout. Timers are again used to protect against lost packets. However, each
packet must now have its own logical timer, since only a single packet will
be transmitted on timeout. A single hardware timer can be used to mimic the
operation of multiple logical timers [Varghese 1997].

3. ACK received. If an ACK is received, the SR sender marks that packet as
having been received, provided it is in the window. If the packet’s sequence
number is equal to send_base, the window base is moved forward to the
unacknowledged packet with the smallest sequence number. If the window
moves and there are untransmitted packets with sequence numbers that now
fall within the window, these packets are transmitted.

Figure 3.24 ¢ SR sender events and actions

1. Packet with sequence number in [rcv_base, rcv_base+N-1] is cor-
rectly received. In this case, the received packet falls within the receiver’s win-
dow and a selective ACK packet is returned to the sender. If the packet was not
previously received, it is buffered. If this packet has a sequence number equal to
the base of the receive window (rcv_base in Figure 3.22), then this packet,
and any previously buffered and consecutively numbered (beginning with
rcv_base) packets are delivered to the upper layer. The receive window is
then moved forward by the number of packets delivered to the upper layer. As
an example, consider Figure 3.26. When a packet with a sequence number of
rcv_base=2 is received, it and packets 3, 4, and 5 can be delivered to the
upper layer.

2. Packet with sequence number in [rcv_base-N, rcv_base-1] is cor-
rectly received. In this case, an ACK must be generated, even though this is a
packet that the receiver has previously acknowledged.

3. Otherwise. Ignore the packet.

Figure 3.25 ¢ SR receiver events and actions

that packet. If the receiver were not to acknowledge this packet, the sender’s win-
dow would never move forward! This example illustrates an important aspect of SR
protocols (and many other protocols as well). The sender and receiver will not
always have an identical view of what has been received correctly and what has not.
For SR protocols, this means that the sender and receiver windows will not always
coincide.

3.4 « PRINCIPLES OF RELIABLE DATA TRANSFER 239

Sender Receiver

pkt0 sent
01234567829

/

pktl sent pkt0 rcvd, delivered, ACKO sent
0123456789 0123456789
— pkt2 sent _--. pktl rcvd, delivered, ACKl sent
01234567839 X 01234567809
(loss)
pkt3 sent, window full
0123456789
pkt3 rcvd, buffered, ACK3 sent
ACKO rcvd, pkt4 sent 0123456789
01234567829
ACK1l rcvd, pkt5 sent pkt4 rcvd, buffered, ACK4 sent
0123456789 01234567829
pkt5 rcvd; buffered, ACK5 sent
L— pkt2 TIMEOUT, pkt2 0123456789

resent
01234567829

pkt2 rcvd, pkt2,pkt3,pkt4d,pkts
delivered, ACK2 sent

01234567829

ACK3 rcvd, nothing sent
012345¢6 7829

Figure 3.26 ¢ SR operation

The lack of synchronization between sender and receiver windows has impor-
tant consequences when we are faced with the reality of a finite range of sequence
numbers. Consider what could happen, for example, with a finite range of four packet
sequence numbers, 0, 1, 2, 3, and a window size of three. Suppose packets O through
2 are transmitted and correctly received and acknowledged at the receiver. At this
point, the receiver’s window is over the fourth, fifth, and sixth packets, which have
sequence numbers 3, 0, and 1, respectively. Now consider two scenarios. In the first
scenario, shown in Figure 3.27(a), the ACKs for the first three packets are lost and

240 CHAPTER 3 TRANSPORT LAYER

Sender window Receiver window
(after receipt) (after receipt)

0123012 pkto

ACKO 01 23012
0123012 pktl

ACKI 0123012
0123012 pkt2

X ACK2 0123012

A\
\

X
timeout
retransmit pktoO
X
0123012 pkto ,° receive packet
with seqg number 0
a.
Sender window Receiver window
(after receipt) (after receipt)

0123012 pkto

ACKO 0123012
0123012 pktl

ACKL 0123012
pkt2

ACK2 0123012

AN
\AN

0123012 pkt3

0123012 pkto

T~ receive packet

with seqg number 0

b.

Figure 3.27 ¢ SR receiver dilemma with too-large windows: A new packet
or a refransmission?

3.4 « PRINCIPLES OF RELIABLE DATA TRANSFER

the sender retransmits these packets. The receiver thus next receives a packet with
sequence number O—a copy of the first packet sent.

In the second scenario, shown in Figure 3.27(b), the ACKs for the first three
packets are all delivered correctly. The sender thus moves its window forward and
sends the fourth, fifth, and sixth packets, with sequence numbers 3, 0, and 1, respec-
tively. The packet with sequence number 3 is lost, but the packet with sequence
number 0 arrives—a packet containing new data.

Now consider the receiver’s viewpoint in Figure 3.27, which has a figurative
curtain between the sender and the receiver, since the receiver cannot “see” the
actions taken by the sender. All the receiver observes is the sequence of messages it
receives from the channel and sends into the channel. As far as it is concerned, the
two scenarios in Figure 3.27 are identical. There is no way of distinguishing the
retransmission of the first packet from an original transmission of the fifth packet.
Clearly, a window size that is 1 less than the size of the sequence number space
won’t work. But how small must the window size be? A problem at the end of the
chapter asks you to show that the window size must be less than or equal to half the
size of the sequence number space for SR protocols.

At the companion Web site, you will find an applet that animates the operation
of the SR protocol. Try performing the same experiments that you did with the GBN
applet. Do the results agree with what you expect?

This completes our discussion of reliable data transfer protocols. We’ve covered
a lot of ground and introduced numerous mechanisms that together provide for reli-
able data transfer. Table 3.1 summarizes these mechanisms. Now that we have seen all
of these mechanisms in operation and can see the “big picture,” we encourage you to
review this section again to see how these mechanisms were incrementally added to
cover increasingly complex (and realistic) models of the channel connecting the
sender and receiver, or to improve the performance of the protocols.

Let’s conclude our discussion of reliable data transfer protocols by considering
one remaining assumption in our underlying channel model. Recall that we have
assumed that packets cannot be reordered within the channel between the sender and
receiver. This is generally a reasonable assumption when the sender and receiver are
connected by a single physical wire. However, when the “channel” connecting the two
is a network, packet reordering can occur. One manifestation of packet reordering is
that old copies of a packet with a sequence or acknowledgment number of x can
appear, even though neither the sender’s nor the receiver’s window contains x. With
packet reordering, the channel can be thought of as essentially buffering packets and
spontaneously emitting these packets at any point in the future. Because sequence
numbers may be reused, some care must be taken to guard against such duplicate
packets. The approach taken in practice is to ensure that a sequence number is not
reused until the sender is “sure” that any previously sent packets with sequence num-
ber x are no longer in the network. This is done by assuming that a packet cannot
“live” in the network for longer than some fixed maximum amount of time. A maxi-
mum packet lifetime of approximately three minutes is assumed in the TCP extensions

241

242

CHAPTER 3

* TRANSPORT LAYER

Mechanism Use, Comments
Checksum Used to detect bit errors in a transmitted packet.
Timer Used to timeout/refransmit a packet, possibly because the packet (or its ACK) was

lost within the channel. Because timeouts can occur when a packet is delayed but
not lost (premature timeout), or when a packet has been received by the receiver
but the receiver-to-sender ACK has been lost, duplicate copies of a packet may be
received by a receiver.

Sequence number

Used for sequential numbering of packets of data flowing from sender to receiver.
Gaps in the sequence numbers of received packets allow the receiver to detect a
lost packet. Packets with duplicate sequence numbers allow the receiver o detect
duplicate copies of a packet.

Acknowledgment

Used by the receiver to tell the sender that o packet or set of packets has been
received correctly. Acknowledgments will typically carry the sequence number of the
packet or packets being acknowledged. Acknowledgments may be individual or
cumulative, depending on the protocol.

Negative acknowledgment

Used by the receiver to tell the sender that a packet has not been received correct-
ly. Negative acknowledgments will typically carry the sequence number of the pack-
et that was not received correctly.

Window, pipelining

The sender may be restricted to sending only packets with sequence numbers that
fall within a given range. By allowing multiple packets to be transmitted but not yet
acknowledged, sender utilization can be increased over a stop-and-wait mode of
operation. We'll see shortly that the window size may be set on the basis of the
receiver's ability to receive and buffer messages, or the level of congesfion in the
network, or both.

Table 3.1 ¢ Summary of reliable data transfer mechanisms and their use

for high-speed networks [RFC 1323]. [Sunshine 1978] describes a method for using
sequence numbers such that reordering problems can be completely avoided.

3.5 Connection-Oriented Transport: TCP

Now that we have covered the underlying principles of reliable data transfer, let’s
turn to TCP—the Internet’s transport-layer, connection-oriented, reliable transport
protocol. In this section, we’ll see that in order to provide reliable data transfer, TCP
relies on many of the underlying principles discussed in the previous section,
including error detection, retransmissions, cumulative acknowledgments, timers,

3.5 « CONNECTION-ORIENTED TRANSPORT: TCP

and header fields for sequence and acknowledgment numbers. TCP is defined in
RFC 793, RFC 1122, RFC 1323, RFC 2018, and RFC 2581.

3.5.1 The TCP Connection

TCP is said to be connection-oriented because before one application process can
begin to send data to another, the two processes must first “handshake” with each
other—that is, they must send some preliminary segments to each other to establish the
parameters of the ensuing data transfer. As part of TCP connection establishment, both
sides of the connection will initialize many TCP state variables (many of which will be
discussed in this section and in Section 3.7) associated with the TCP connection.

The TCP “connection” is not an end-to-end TDM or FDM circuit as in a circuit-
switched network. Nor is it a virtual circuit (see Chapter 1), as the connection state
resides entirely in the two end systems. Because the TCP protocol runs only in the
end systems and not in the intermediate network elements (routers and link-layer
switches), the intermediate network elements do not maintain TCP connection state.

CASE HISTORY

VINTON CERF, ROBERT KAHN, AND TCP/IP

In the early 1970s, packet-switched networks began to proliferate, with the
ARPAnet—the precursor of the Internet—being just one of many networks. Each of
these networks had its own protocol. Two researchers, Vinton Cerf and Robert Kahn,
recognized the importance of interconnecting these networks and invented a cross-
network protocol called TCP/IP, which stands for Transmission Control
Protocol/Internet Protocol. Although Cerf and Kahn began by seeing the protocol as
a single entity, it was later split into its two parts, TCP and IP, which operated sepa-
rately. Cerf and Kahn published a paper on TCP/IP in May 1974 in IEEE
Transactions on Communications Technology [Cerf 1974].

The TCP/IP protocol, which is the bread and butter of today’s Internet, was
devised before PCs and workstations, before the proliferation of Ethernets and other
local area network technologies, and before the Web, streaming audio, and chat.
Cerf and Kahn saw the need for a networking protocol that, on the one hand, pro-
vides broad support for yetto-be-defined applications and, on the other hand, allows
arbitrary hosts and link-layer protocols to interoperate.

In 2004, Cerf and Kahn received the ACM’s Turing Award, considered the
“Nobel Prize of Computing” for “pioneering work on internetworking, including the
design and implementation of the Internet’s basic communications protocols, TCP/IP,
and for inspired leadership in networking.”

243

244

CHAPTER 3

* TRANSPORT LAYER

In fact, the intermediate routers are completely oblivious to TCP connections; they
see datagrams, not connections.

A TCP connection provides a full-duplex service: If there is a TCP connection
between Process A on one host and Process B on another host, then application-
layer data can flow from Process A to Process B at the same time as application-
layer data flows from Process B to Process A. A TCP connection is also always
point-to-point, that is, between a single sender and a single receiver. So-called
“multicasting” (see Section 4.7)—the transfer of data from one sender to many
receivers in a single send operation—is not possible with TCP. With TCP, two hosts
are company and three are a crowd!

Let’s now take a look at how a TCP connection is established. Suppose a
process running in one host wants to initiate a connection with another process in
another host. Recall that the process that is initiating the connection is called the
client process, while the other process is called the server process. The client appli-
cation process first informs the client transport layer that it wants to establish a
connection to a process in the server. Recall from Section 2.7, a Java client program
does this by issuing the command

Socket clientSocket = new Socket(“hostname”, portNumber);

where hostname is the name of the server and portNumber identifies the process
on the server. The transport layer in the client then proceeds to establish a TCP con-
nection with the TCP in the server. At the end of this section we discuss in some
detail the connection-establishment procedure. For now it suffices to know that the
client first sends a special TCP segment; the server responds with a second special
TCP segment; and finally the client responds again with a third special segment. The
first two segments carry no payload, that is, no application-layer data; the third of
these segments may carry a payload. Because three segments are sent between the
two hosts, this connection-establishment procedure is often referred to as a three-
way handshake.

Once a TCP connection is established, the two application processes can send
data to each other. Let’s consider the sending of data from the client process to the
server process. The client process passes a stream of data through the socket (the
door of the process), as described in Section 2.7. Once the data passes through
the door, the data is now in the hands of TCP running in the client. As shown in
Figure 3.28, TCP directs this data to the connection’s send buffer, which is one of
the buffers that is set aside during the initial three-way handshake. From time to
time, TCP will grab chunks of data from the send buffer. Interestingly, the TCP spec-
ification [RFC 793] is very laid back about specifying when TCP should actually
send buffered data, stating that TCP should “send that data in segments at its own
convenience.” The maximum amount of data that can be grabbed and placed in a
segment is limited by the maximum segment size (MSS). The MSS is typically set
by first determining the length of the largest link-layer frame that can be sent by the

3.5 « CONNECTION-ORIENTED TRANSPORT: TCP

Process
reads data

Process

writes data

Socket Socket
TCP l Segment = | Segment = TCP
receive
buffer

Figure 3.28 ¢ TCP send and receive buffers

local sending host (the so-called maximum transmission unit, MTU), and then
setting the MSS to ensure that a TCP segment (when encapsulated in an IP data-
gram) will fit into a single link-layer frame. Common values for the MTU are 1,460
bytes, 536 bytes, and 512 bytes. Approaches have also been proposed for discover-
ing the path MTU—the largest link-layer frame that can be sent on all links from
source to destination [RFC 1191]—and setting the MSS based on the path MTU
value. Note that the MSS is the maximum amount of application-layer data in the
segment, not the maximum size of the TCP segment including headers. (This termi-
nology is confusing, but we have to live with it, as it is well entrenched.)

TCP pairs each chunk of client data with a TCP header, thereby forming TCP
segments. The segments are passed down to the network layer, where they are sepa-
rately encapsulated within network-layer IP datagrams. The IP datagrams are then
sent into the network. When TCP receives a segment at the other end, the segment’s
data is placed in the TCP connection’s receive buffer, as shown in Figure 3.28. The
application reads the stream of data from this buffer. Each side of the connection has
its own send buffer and its own receive buffer. (You can see the online flow-control
applet at http://www.awl.com/kurose-ross, which provides an animation of the send
and receive buffers.)

We see from this discussion that a TCP connection consists of buffers, vari-
ables, and a socket connection to a process in one host, and another set of buffers,
variables, and a socket connection to a process in another host. As mentioned ear-
lier, no buffers or variables are allocated to the connection in the network elements
(routers, switches, and repeaters) between the hosts.

3.5.2 TCP Segment Structure

Having taken a brief look at the TCP connection, let’s examine the TCP segment
structure. The TCP segment consists of header fields and a data field. The data
field contains a chunk of application data. As mentioned above, the MSS limits the

245

http://www.awl.com/kurose-ross

246

CHAPTER 3

* TRANSPORT LAYER

32 bits
\

Source port # Dest port #

Sequence number

Acknowledgment number

Header OMTE-Z= . .
x U =
length Unused £ 262> & Receive window
Internet checksum Urgent data pointer
Options
Data

Figure 3.29 ¢ TCP segment structure

maximum size of a segment’s data field. When TCP sends a large file, such as an
image as part of a Web page, it typically breaks the file into chunks of size MSS
(except for the last chunk, which will often be less than the MSS). Interactive appli-
cations, however, often transmit data chunks that are smaller than the MSS; for
example, with remote login applications like Telnet, the data field in the TCP seg-
ment is often only one byte. Because the TCP header is typically 20 bytes (12 bytes
more than the UDP header), segments sent by Telnet may be only 21 bytes in length.

Figure 3.29 shows the structure of the TCP segment. As with UDP, the header
includes source and destination port numbers, which are used for
multiplexing/demultiplexing data from/to upper-layer applications. Also, as with
UDP, the header includes a checksum field. A TCP segment header also contains
the following fields:

* The 32-bit sequence number field and the 32-bit acknowledgment number
field are used by the TCP sender and receiver in implementing a reliable data
transfer service, as discussed below.

* The 16-bit receive window field is used for flow control. We will see shortly that
it is used to indicate the number of bytes that a receiver is willing to accept.

* The 4-bit header length field specifies the length of the TCP header in 32-bit
words. The TCP header can be of variable length due to the TCP options field.

3.5 « CONNECTION-ORIENTED TRANSPORT: TCP

(Typically, the options field is empty, so that the length of the typical TCP header
is 20 bytes.)

* The optional and variable-length options field is used when a sender and
receiver negotiate the maximum segment size (MSS) or as a window scaling fac-
tor for use in high-speed networks. A time-stamping option is also defined. See
RFC 854 and RFC 1323 for additional details.

* The flag field contains 6 bits. The ACK bit is used to indicate that the value car-
ried in the acknowledgment field is valid; that is, the segment contains an
acknowledgement for a segment that has been successfully received. The RST,
SYN, and FIN bits are used for connection setup and teardown, as we will dis-
cuss at the end of this section. Setting the PSH bit indicates that the receiver
should pass the data to the upper layer immediately. Finally, the URG bit is used
to indicate that there is data in this segment that the sending-side upper-layer
entity has marked as “urgent.” The location of the last byte of this urgent data is
indicated by the 16-bit urgent data pointer field. TCP must inform the receiv-
ing-side upper-layer entity when urgent data exists and pass it a pointer to the
end of the urgent data. (In practice, the PSH, URG, and the urgent data pointer
are not used. However, we mention these fields for completeness.)

Sequence Numbers and Acknowledgment Numbers

Two of the most important fields in the TCP segment header are the sequence number
field and the acknowledgment number field. These fields are a critical part of TCP’s
reliable data transfer service. But before discussing how these fields are used to provide
reliable data transfer, let us first explain what exactly TCP puts in these fields.

TCP views data as an unstructured, but ordered, stream of bytes. TCP’s use of
sequence numbers reflects this view in that sequence numbers are over the stream of
transmitted bytes and not over the series of transmitted segments. The sequence
number for a segment is therefore the byte-stream number of the first byte in the
segment. Let’s look at an example. Suppose that a process in Host A wants to send a
stream of data to a process in Host B over a TCP connection. The TCP in Host A will
implicitly number each byte in the data stream. Suppose that the data stream consists
of a file consisting of 500,000 bytes, that the MSS is 1,000 bytes, and that the first
byte of the data stream is numbered 0. As shown in Figure 3.30, TCP constructs 500
segments out of the data stream. The first segment gets assigned sequence number 0,
the second segment gets assigned sequence number 1,000, the third segment gets
assigned sequence number 2,000, and so on. Each sequence number is inserted in the
sequence number field in the header of the appropriate TCP segment.

Now let’s consider acknowledgment numbers. These are a little trickier than
sequence numbers. Recall that TCP is full-duplex, so that Host A may be receiving
data from Host B while it sends data to Host B (as part of the same TCP connection).
Each of the segments that arrive from Host B has a sequence number for the data

247

248 CHAPTER 3 TRANSPORT LAYER

File
|

Data for 1st segment Data for 2nd segment

| |
1/ I’II 17
0 1 1,000 1,999 499,999

/L i i
17 1 1

Figure 3.30 ¢ Dividing file data into TCP segments

flowing from B to A. The acknowledgment number that Host A puts in its segment
is the sequence number of the next byte Host A is expecting from Host B. It is good
to look at a few examples to understand what is going on here. Suppose that Host A
has received all bytes numbered O through 535 from B and suppose that it is about
to send a segment to Host B. Host A is waiting for byte 536 and all the subsequent
bytes in Host B’s data stream. So Host A puts 536 in the acknowledgment number
field of the segment it sends to B.

As another example, suppose that Host A has received one segment from Host
B containing bytes 0 through 535 and another segment containing bytes 900 through
1,000. For some reason Host A has not yet received bytes 536 through 899. In this
example, Host A is still waiting for byte 536 (and beyond) in order to re-create B’s
data stream. Thus, A’s next segment to B will contain 536 in the acknowledgment
number field. Because TCP only acknowledges bytes up to the first missing byte in
the stream, TCP is said to provide cumulative acknowledgments.

This last example also brings up an important but subtle issue. Host A received
the third segment (bytes 900 through 1,000) before receiving the second segment
(bytes 536 through 899). Thus, the third segment arrived out of order. The subtle
issue is: What does a host do when it receives out-of-order segments in a TCP con-
nection? Interestingly, the TCP RFCs do not impose any rules here and leave the
decision up to the people programming a TCP implementation. There are basically
two choices: either (1) the receiver immediately discards out-of-order segments
(which, as we discussed earlier, can simplify receiver design) or (2) the receiver
keeps the out-of-order bytes and waits for the missing bytes to fill in the gaps.
Clearly, the latter choice is more efficient in terms of network bandwidth, and is the
approach taken in practice.

In Figure 3.30, we assumed that the initial sequence number was zero. In truth,
both sides of a TCP connection randomly choose an initial sequence number. This is
done to minimize the possibility that a segment that is still present in the network
from an earlier, already-terminated connection between two hosts is mistaken for a
valid segment in a later connection between these same two hosts (which also hap-
pen to be using the same port numbers as the old connection) [Sunshine 1978].

3.5 « CONNECTION-ORIENTED TRANSPORT: TCP

Telnet: A Case Study for Sequence and Acknowledgment Numbers

Telnet, defined in RFC 854, is a popular application-layer protocol used for remote
login. It runs over TCP and is designed to work between any pair of hosts. Unlike
the bulk data transfer applications discussed in Chapter 2, Telnet is an interactive
application. We discuss a Telnet example here, as it nicely illustrates TCP sequence
and acknowledgment numbers. We note that many users now prefer to use the ssh
protocol rather than Telnet, since data sent in a Telnet connection (including pass-
words!) is not encrypted, making Telnet vulnerable to eavesdropping attacks (as dis-
cussed in Section 8.7).

Suppose Host A initiates a Telnet session with Host B. Because Host A initiates
the session, it is labeled the client, and Host B is labeled the server. Each character
typed by the user (at the client) will be sent to the remote host; the remote host will
send back a copy of each character, which will be displayed on the Telnet user’s
screen. This “echo back™ is used to ensure that characters seen by the Telnet user
have already been received and processed at the remote site. Each character thus
traverses the network twice between the time the user hits the key and the time the
character is displayed on the user’s monitor.

Now suppose the user types a single letter, ‘C,” and then grabs a coffee. Let’s exam-
ine the TCP segments that are sent between the client and server. As shown in Figure
3.31, we suppose the starting sequence numbers are 42 and 79 for the client and server,
respectively. Recall that the sequence number of a segment is the sequence number of
the first byte in the data field. Thus, the first segment sent from the client will have
sequence number 42; the first segment sent from the server will have sequence number
79. Recall that the acknowledgment number is the sequence number of the next byte of
data that the host is waiting for. After the TCP connection is established but before any
data is sent, the client is waiting for byte 79 and the server is waiting for byte 42.

As shown in Figure 3.31, three segments are sent. The first segment is sent from
the client to the server, containing the 1-byte ASCII representation of the letter ‘C’
in its data field. This first segment also has 42 in its sequence number field, as we
just described. Also, because the client has not yet received any data from the server,
this first segment will have 79 in its acknowledgment number field.

The second segment is sent from the server to the client. It serves a dual pur-
pose. First it provides an acknowledgment of the data the server has received. By
putting 43 in the acknowledgment field, the server is telling the client that it has suc-
cessfully received everything up through byte 42 and is now waiting for bytes 43
onward. The second purpose of this segment is to echo back the letter ‘C.” Thus, the
second segment has the ASCII representation of ‘C’ in its data field. This second
segment has the sequence number 79, the initial sequence number of the server-to-
client data flow of this TCP connection, as this is the very first byte of data that the
server is sending. Note that the acknowledgment for client-to-server data is carried
in a segment carrying server-to-client data; this acknowledgment is said to be
piggybacked on the server-to-client data segment.

249

250

CHAPTER 3

* TRANSPORT LAYER

Host A Host B
[[
= =
User types
ICI
Host ACKs
receipt of 'c’,
echoes back 'c'
Host ACKs
receipt of
echoed 'C'

Time Time

Figure 3.31 ¢ Sequence and acknowledgement numbers for a simple
Telnet application over TCP

The third segment is sent from the client to the server. Its sole purpose is to
acknowledge the data it has received from the server. (Recall that the second seg-
ment contained data—the letter ‘C’—from the server to the client.) This segment
has an empty data field (that is, the acknowledgment is not being piggybacked with
any client-to-server data). The segment has 80 in the acknowledgment number field
because the client has received the stream of bytes up through byte sequence num-
ber 79 and it is now waiting for bytes 80 onward. You might think it odd that this
segment also has a sequence number since the segment contains no data. But
because TCP has a sequence number field, the segment needs to have some
sequence number.

3.5.3 Round-Trip Time Estimation and Timeout

TCP, like our rdt protocol in Section 3.4, uses a timeout/retransmit mechanism to
recover from lost segments. Although this is conceptually simple, many subtle
issues arise when we implement a timeout/retransmit mechanism in an actual proto-
col such as TCP. Perhaps the most obvious question is the length of the timeout

3.5 « CONNECTION-ORIENTED TRANSPORT: TCP

intervals. Clearly, the timeout should be larger than the connection’s round-trip time
(RTT), that is, the time from when a segment is sent until it is acknowledged. Other-
wise, unnecessary retransmissions would be sent. But how much larger? How
should the RTT be estimated in the first place? Should a timer be associated with
each and every unacknowledged segment? So many questions! Our discussion in
this section is based on the TCP work in [Jacobson 1988] and the current IETF rec-
ommendations for managing TCP timers [RFC 2988].

Estimating the Round-Trip Time

Let’s begin our study of TCP timer management by considering how TCP estimates
the round-trip time between sender and receiver. This is accomplished as follows.
The sample RTT, denoted SampleRTT, for a segment is the amount of time
between when the segment is sent (that is, passed to IP) and when an acknowledg-
ment for the segment is received. Instead of measuring a SampleRTT for every
transmitted segment, most TCP implementations take only one SampleRTT meas-
urement at a time. That is, at any point in time, the SampleRTT is being estimated
for only one of the transmitted but currently unacknowledged segments, leading to a
new value of SampleRTT approximately once every RTT. Also, TCP never com-
putes a SampleRTT for a segment that has been retransmitted; it only measures
SampleRTT for segments that have been transmitted once. (A problem at the end
of the chapter asks you to consider why.)

Obviously, the SampleRTT values will fluctuate from segment to segment due
to congestion in the routers and to the varying load on the end systems. Because of
this fluctuation, any given SampleRTT value may be atypical. In order to estimate
a typical RTT, it is therefore natural to take some sort of average of the Sam-
pleRTT values. TCP maintains an average, called EstimatedRTT, of the Sam-
pleRTT values. Upon obtaining a new SampleRTT, TCP updates
EstimatedRTT according to the following formula:

EstimatedRTT = (1 — a) + EstimatedRTT + a °* SampleRTT

The formula above is written in the form of a programming-language statement—
the new value of EstimatedRTT is a weighted combination of the previous value
of EstimatedRTT and the new value for SampleRTT. The recommended value
of a is a = 0.125 (that is, 1/8) [RFC 2988], in which case the formula above
becomes:

EstimatedRTT = 0.875 + EstimatedRTT + 0.125 -+ SampleRTT
Note that EstimatedRTT is a weighted average of the SampleRTT values.

As discussed in a homework problem at the end of this chapter, this weighted aver-
age puts more weight on recent samples than on old samples. This is natural, as the

251

252

CHAPTER 3

* TRANSPORT LAYER

PRINCIPLES IN PRACTICE

TCP provides reliable data transfer by using positive acknowledgments and timers in much

the same way that we studied in Section 3.4. TCP acknowledges data that has been
received correctly, and it then retransmits segments when segments or their corresponding
acknowledgments are thought to be lost or corrupted. Certain versions of TCP also have an
implicit NAK mechanism —with TCP’s fast retransmit mechanism, the receipt of three dupli-
cate ACKs for a given segment serves as an implicit NAK for the following segment, trig-
gering refransmission of that segment before timeout. TCP uses sequences of numbers to
allow the receiver to identify lost or duplicate segments. Just as in the case of our reliable
data transfer protocol, rdt 3.0, TCP cannot itself tell for certain if a segment, or its
ACK, is lost, corrupted, or overly delayed. At the sender, TCP’s response will be the same:
retransmit the segment in question.

TCP also uses pipelining, allowing the sender to have multiple transmitted but yet-to-be-
acknowledged segments outstanding at any given time. We saw earlier that pipelining
can greatly improve a session’s throughput when the ratio of the segment size to round-
trip delay is small. The specific number of outstanding, unacknowledged segments that a
sender can have is determined by TCP’s flow-control and congestion-control mechanisms.
TCP flow control is discussed at the end of this section; TCP congestion control is dis-
cussed in Section 3.7. For the time being, we must simply be aware that the TCP sender
uses pipelining.

more recent samples better reflect the current congestion in the network. In statis-
tics, such an average is called an exponential weighted moving average (EWMA).
The word “exponential” appears in EWMA because the weight of a given Sam-
pleRTT decays exponentially fast as the updates proceed. In the homework prob-
lems you will be asked to derive the exponential term in EstimatedRTT.

Figure 3.32 shows the SampleRTT values and EstimatedRTT for a value of
a = 1/8 for a TCP connection between gaia.cs.umass.edu (in Amherst,
Massachusetts) to fantasia.eurecom. fr (in the south of France). Clearly,
the variations in the SampleRTT are smoothed out in the computation of the Esti-
matedRTT.

In addition to having an estimate of the RTT, it is also valuable to have a
measure of the variability of the RTT. [RFC 2988] defines the RTT variation,
DevRTT, as an estimate of how much SampleRTT typically deviates from
EstimatedRTT:

DevRTT = (1 — B) : DevRTT + B ‘| SampleRTT — EstimatedRTT |

Note that DevRTT is an EWMA of the difference between SampleRTT and
EstimatedRTT. If the SampleRTT values have little fluctuation, then DevRTT

3.5 « CONNECTION-ORIENTED TRANSPORT: TCP

350

300

250 Sample RTT

200

RTT (milliseconds)
>

Estimated RTT
150

100 T T T T T T T T T T T T

Time (seconds)

Figure 3.32 ¢ RTT samples and RTT estimates

will be small; on the other hand, if there is a lot of fluctuation, DevRTT will be
large. The recommended value of B is 0.25.

Setting and Managing the Retransmission Timeout Interval

Given values of EstimatedRTT and DevRTT, what value should be used for
TCP’s timeout interval? Clearly, the interval should be greater than or equal to
EstimatedRTT, or unnecessary retransmissions would be sent. But the timeout
interval should not be too much larger than EstimatedRTT; otherwise, when a
segment is lost, TCP would not quickly retransmit the segment, leading to large data
transfer delays. It is therefore desirable to set the timeout equal to the Estimate-
dRTT plus some margin. The margin should be large when there is a lot of fluctua-
tion in the SampleRTT values; it should be small when there is little fluctuation.
The value of DevRTT should thus come into play here. All of these considerations
are taken into account in TCP’s method for determining the retransmission timeout
interval:

TimeoutInterval = EstimatedRTT + 4 - DevRTT

253

254

CHAPTER 3

* TRANSPORT LAYER

3.5.4 Reliable Data Transfer

Recall that the Internet’s network-layer service (IP service) is unreliable. IP does
not guarantee datagram delivery, does not guarantee in-order delivery of data-
grams, and does not guarantee the integrity of the data in the datagrams. With IP
service, datagrams can overflow router buffers and never reach their destination,
datagrams can arrive out of order, and bits in the datagram can get corrupted
(flipped from O to 1 and vice versa). Because transport-layer segments are carried
across the network by IP datagrams, transport-layer segments can suffer from these
problems as well.

TCP creates a reliable data transfer service on top of IP’s unreliable best-
effort service. TCP’s reliable data transfer service ensures that the data stream that a
process reads out of its TCP receive buffer is uncorrupted, without gaps, without
duplication, and in sequence; that is, the byte stream is exactly the same byte stream
that was sent by the end system on the other side of the connection. How TCP pro-
vides a reliable data transfer involves many of the principles that we studied in
Section 3.4.

In our earlier development of reliable data transfer techniques, it was conceptu-
ally easiest to assume that an individual timer is associated with each transmitted
but not yet acknowledged segment. While this is great in theory, timer management
can require considerable overhead. Thus, the recommended TCP timer management
procedures [RFC 2988] use only a single retransmission timer, even if there are mul-
tiple transmitted but not yet acknowledged segments. The TCP protocol described
in this section follows this single-timer recommendation.

We will discuss how TCP provides reliable data transfer in two incremental
steps. We first present a highly simplified description of a TCP sender that uses only
timeouts to recover from lost segments; we then present a more complete descrip-
tion that uses duplicate acknowledgments in addition to timeouts. In the ensuing dis-
cussion, we suppose that data is being sent in only one direction, from Host A to
Host B, and that Host A is sending a large file.

Figure 3.33 presents a highly simplified description of a TCP sender. We see
that there are three major events related to data transmission and retransmission in
the TCP sender: data received from application above; timer timeout; and ACK
receipt. Upon the occurrence of the first major event, TCP receives data from the
application, encapsulates the data in a segment, and passes the segment to IP. Note
that each segment includes a sequence number that is the byte-stream number of
the first data byte in the segment, as described in Section 3.5.2. Also note that if the
timer is already not running for some other segment, TCP starts the timer when the
segment is passed to IP. (It is helpful to think of the timer as being associated with
the oldest unacknowledged segment.) The expiration interval for this timer is the
TimeoutInterval, which is calculated from EstimatedRTT and DevRTT,
as described in Section 3.5.3.

3.5 « CONNECTION-ORIENTED TRANSPORT: TCP 255

/* Assume sender is not constrained by TCP flow or congestion control, that data from above is less
than MSS in size, and that data transfer is in one direction only. */

NextSegNum=InitialSegNumber
SendBase=InitialSegNumber

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum=NextSegNum+length(data)
break;

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer
break;

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase=y
if (there are currently any not-yet-acknowledged segments)
start timer

}

break;

} /* end of loop forever */

Figure 3.33 ¢ Simplified TCP sender

The second major event is the timeout. TCP responds to the timeout event by
retransmitting the segment that caused the timeout. TCP then restarts the timer.

The third major event that must be handled by the TCP sender is the arrival of an
acknowledgment segment (ACK) from the receiver (more specifically, a segment con-
taining a valid ACK field value). On the occurrence of this event, TCP compares the
ACK value y with its variable SendBase. The TCP state variable SendBase is the
sequence number of the oldest unacknowledged byte. (Thus SendBase—1 is the
sequence number of the last byte that is known to have been received correctly and in
order at the receiver.) As indicated earlier, TCP uses cumulative acknowledgments, so
that y acknowledges the receipt of all bytes before byte number y. If y > SendBase,

256

CHAPTER 3

* TRANSPORT LAYER

then the ACK is acknowledging one or more previously unacknowledged segments.
Thus the sender updates its SendBase variable; it also restarts the timer if there cur-
rently are any not-yet-acknowledged segments.

A Few Interesting Scenarios

We have just described a highly simplified version of how TCP provides reliable
data transfer. But even this highly simplified version has many subtleties. To get a
good feeling for how this protocol works, let’s now walk through a few simple
scenarios. Figure 3.34 depicts the first scenario, in which Host A sends one seg-
ment to Host B. Suppose that this segment has sequence number 92 and contains 8
bytes of data. After sending this segment, Host A waits for a segment from B with
acknowledgment number 100. Although the segment from A is received at B, the
acknowledgment from B to A gets lost. In this case, the timeout event occurs, and
Host A retransmits the same segment. Of course, when Host B receives the
retransmission, it observes from the sequence number that the segment contains
data that has already been received. Thus, TCP in Host B will discard the bytes in
the retransmitted segment.

Host A Host B

e

£

SeQ=92[

8 byteg dat
a

Ti]
imeout y
X

(loss)

ACK‘100

Time Time

Figure 3.34 ¢ Retransmission due to a lost acknowledgment

3.5 « CONNECTION-ORIENTED TRANSPORT: TCP

In a second scenario, shown in Figure 3.35, Host A sends two segments back to
back. The first segment has sequence number 92 and 8 bytes of data, and the second
segment has sequence number 100 and 20 bytes of data. Suppose that both segments
arrive intact at B, and B sends two separate acknowledgments for each of these seg-
ments. The first of these acknowledgments has acknowledgment number 100; the
second has acknowledgment number 120. Suppose now that neither of the acknowl-
edgments arrives at Host A before the timeout. When the timeout event occurs, Host
A resends the first segment with sequence number 92 and restarts the timer. As long
as the ACK for the second segment arrives before the new timeout, the second seg-
ment will not be retransmitted.

In a third and final scenario, suppose Host A sends the two segments, exactly as
in the second example. The acknowledgment of the first segment is lost in the
network, but just before the timeout event, Host A receives an acknowledgment with
acknowledgment number 120. Host A therefore knows that Host B has received
everything up through byte 119; so Host A does not resend either of the two
segments. This scenario is illustrated in Figure 3.36.

Host A Host B

seg=92 timeout interval —

seg=92 timeout interval —

NG

Time Time

Figure 3.35 ¢ Segment 100 not retransmitted

257

258

CHAPTER 3

* TRANSPORT LAYER

Host A Host B

Seg=92 timeout interval —

Time Time

Figure 3.36 ¢ A cumulative acknowledgment avoids retransmission of the
first segment.

Doubling the Timeout Interval

We now discuss a few modifications that most TCP implementations employ. The
first concerns the length of the timeout interval after a timer expiration. In this mod-
ification, whenever the timeout event occurs, TCP retransmits the not-yet-
acknowledged segment with the smallest sequence number, as described above. But
each time TCP retransmits, it sets the next timeout interval to twice the previous
value, rather than deriving it from the last EstimatedRTT and DevRTT (as
described in Section 3.5.3). For example, suppose TimeoutInterval associated
with the oldest not yet acknowledged segment is .75 sec when the timer first expires.
TCP will then retransmit this segment and set the new expiration time to 1.5 sec. If
the timer expires again 1.5 sec later, TCP will again retransmit this segment, now
setting the expiration time to 3.0 sec. Thus the intervals grow exponentially after
each retransmission. However, whenever the timer is started after either of the two
other events (that is, data received from application above, and ACK received), the

3.5 « CONNECTION-ORIENTED TRANSPORT: TCP

TimeoutInterval is derived from the most recent values of EstimatedRTT
and DevRTT.

This modification provides a limited form of congestion control. (More com-
prehensive forms of TCP congestion control will be studied in Section 3.7.) The
timer expiration is most likely caused by congestion in the network, that is, too
many packets arriving at one (or more) router queues in the path between the source
and destination, causing packets to be dropped and/or long queuing delays. In times
of congestion, if the sources continue to retransmit packets persistently, the conges-
tion may get worse. Instead, TCP acts more politely, with each sender retransmitting
after longer and longer intervals. We will see that a similar idea is used by Ethernet
when we study CSMA/CD in Chapter 5.

Fast Retransmit

One of the problems with timeout-triggered retransmissions is that the timeout
period can be relatively long. When a segment is lost, this long timeout period
forces the sender to delay resending the lost packet, thereby increasing the end-to-
end delay. Fortunately, the sender can often detect packet loss well before the time-
out event occurs by noting so-called duplicate ACKs. A duplicate ACK is an ACK
that reacknowledges a segment for which the sender has already received an earlier
acknowledgment. To understand the sender’s response to a duplicate ACK, we must
look at why the receiver sends a duplicate ACK in the first place. Table 3.2 summa-
rizes the TCP receiver’s ACK generation policy [RFC 1122, RFC 2581]. When a
TCP receiver receives a segment with a sequence number that is larger than the next,
expected, in-order sequence number, it detects a gap in the data stream—that is, a
missing segment. This gap could be the result of lost or reordered segments within

259

Event TCP Receiver Action

Arival of in-order segment with expected sequence number. Al Delayed ACK. Wait up to 500 msec for arrival of another in-order seg-

data up to expected sequence number already acknowledged. ment. If next in-order segment does not arrive in this inferval, send an ACK.
Arrival of in-order segment with expected sequence number. One Immediately send single cumulative ACK, ACKing both in-order segments.
other in-order segment waiting for ACK transmission.

Arrival of out-of-order segment with higher-than-expected sequence Immediately send duplicate ACK, indicating sequence number of next
number. Gap defected. expected byte (which is the lower end of the gap).

Arrival of segment that partially or completely fills in gap in Immediately send ACK, provided that segment starts at the lower end
received data. of gap.

Table 3.2 ¢ TCP ACK Generation Recommendation [RFC 1122, RFC 2581]

260

CHAPTER 3

* TRANSPORT LAYER

the network. Since TCP does not use negative acknowledgments, the receiver
cannot send an explicit negative acknowledgment back to the sender. Instead, it sim-
ply reacknowledges (that is, generates a duplicate ACK for) the last in-order byte of
data it has received. (Note that Table 3.2 allows for the case that the receiver does
not discard out-of-order segments.)

Because a sender often sends a large number of segments back to back, if one seg-
ment is lost, there will likely be many back-to-back duplicate ACKs. If the TCP sender
receives three duplicate ACKs for the same data, it takes this as an indication that the
segment following the segment that has been ACKed three times has been lost. (In the
homework problems, we consider the question of why the sender waits for three dupli-
cate ACKs, rather than just a single duplicate ACK.) In the case that three duplicate
ACKSs are received, the TCP sender performs a fast retransmit [RFC 2581], retrans-
mitting the missing segment before that segment’s timer expires. This is shown in
Figure 3.37, where the second segment is lost, then retransmitted before its timer
expires. For TCP with fast retransmit, the following code snippet replaces the ACK
received event in Figure 3.33:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase=y
if (there are currently any not yet
acknowledged segments)
start timer
}
else { /* a duplicate ACK for already ACKed
segment */
increment number of duplicate ACKs
received for y
if (number of duplicate ACKS received
for y==3)
/* TCP fast retransmit */
resend segment with sequence number y
}

break;

We noted earlier that many subtle issues arise when a timeout/retransmit mech-
anism is implemented in an actual protocol such as TCP. The procedures above,
which have evolved as a result of more than 15 years of experience with TCP timers,
should convince you that this is indeed the case!

Go-Back-N or Selective Repeat?

Let us close our study of TCP’s error-recovery mechanism by considering the follow-
ing question: Is TCP a GBN or an SR protocol? Recall that TCP acknowledgments are
cumulative and correctly received but out-of-order segments are not individually

3.5 « CONNECTION-ORIENTED TRANSPORT: TCP

Host A Host B

ack=100

ack=100
ack=100
ack=100

Timeout -

Time Time

Figure 3.37 ¢ Fast retransmit: retransmitting the missing segment before
the segment’s timer expires.

ACKed by the receiver. Consequently, as shown in Figure 3.33 (see also Figure 3.19),
the TCP sender need only maintain the smallest sequence number of a transmitted but
unacknowledged byte (SendBase) and the sequence number of the next byte to be
sent (NextSeqgNum). In this sense, TCP looks a lot like a GBN-style protocol. But
there are some striking differences between TCP and Go-Back-N. Many TCP imple-
mentations will buffer correctly received but out-of-order segments [Stevens 1994].
Consider also what happens when the sender sends a sequence of segments 1, 2, . . .,
N, and all of the segments arrive in order without error at the receiver. Further suppose
that the acknowledgment for packet n < N gets lost, but the remaining N — 1 acknowl-
edgments arrive at the sender before their respective timeouts. In this example, GBN
would retransmit not only packet n, but also all of the subsequent packets n + 1, n + 2,
..., N. TCP, on the other hand, would retransmit at most one segment, namely, seg-
ment n. Moreover, TCP would not even retransmit segment » if the acknowledgment
for segment n + 1 arrived before the timeout for segment n.

261

262

CHAPTER 3

* TRANSPORT LAYER

A proposed modification to TCP, the so-called selective acknowledgment
[RFC 2018], allows a TCP receiver to acknowledge out-of-order segments selec-
tively rather than just cumulatively acknowledging the last correctly received, in-
order segment. When combined with selective retransmission—skipping the
retransmission of segments that have already been selectively acknowledged by the
receiver—TCP looks a lot like our generic SR protocol. Thus, TCP’s error-recovery
mechanism is probably best categorized as a hybrid of GBN and SR protocols.

3.5.5 Flow Control

Recall that the hosts on each side of a TCP connection set aside a receive buffer for
the connection. When the TCP connection receives bytes that are correct and in
sequence, it places the data in the receive buffer. The associated application process
will read data from this buffer, but not necessarily at the instant the data arrives.
Indeed, the receiving application may be busy with some other task and may not
even attempt to read the data until long after it has arrived. If the application is rela-
tively slow at reading the data, the sender can very easily overflow the connection’s
receive buffer by sending too much data too quickly.

TCP provides a flow-control service to its applications to eliminate the possibility
of the sender overflowing the receiver’s buffer. Flow control is thus a speed-matching
service—matching the rate at which the sender is sending against the rate at which the
receiving application is reading. As noted earlier, a TCP sender can also be throttled
due to congestion within the IP network; this form of sender control is referred to as
congestion control, a topic we will explore in detail in Sections 3.6 and 3.7. Even
though the actions taken by flow and congestion control are similar (the throttling of
the sender), they are obviously taken for very different reasons. Unfortunately, many
authors use the terms interchangeably, and the savvy reader would be wise to distin-
guish between them. Let’s now discuss how TCP provides its flow-control service. In
order to see the forest for the trees, we suppose throughout this section that the TCP
implementation is such that the TCP receiver discards out-of-order segments.

TCP provides flow control by having the sender maintain a variable called the
receive window. Informally, the receive window is used to give the sender an idea of
how much free buffer space is available at the receiver. Because TCP is full-duplex, the
sender at each side of the connection maintains a distinct receive window. Let’s investi-
gate the receive window in the context of a file transfer. Suppose that Host A is sending
a large file to Host B over a TCP connection. Host B allocates a receive buffer to this
connection; denote its size by RcvBuf fer. From time to time, the application process
in Host B reads from the buffer. Define the following variables:

* LastByteRead: the number of the last byte in the data stream read from the
buffer by the application process in B

* LastByteRcvd: the number of the last byte in the data stream that has arrived
from the network and has been placed in the receive buffer at B

3.5 « CONNECTION-ORIENTED TRANSPORT: TCP

RcvBuffer
\
rwnd
\
\

Data Application
from IP process

—p Spare room e gz —p

in buffer

Figure 3.38 ¢ The receive window (rwnd) and the receive buffer
(RcvBuffer)

Because TCP is not permitted to overflow the allocated buffer, we must have
LastByteRcvd — LastByteRead = RcvBuffer

The receive window, denoted rwnd is set to the amount of spare room in the buffer:
rwnd = RcvBuffer — [LastByteRcvd — LastByteRead]

Because the spare room changes with time, rwnd is dynamic. The variable rwnd is
illustrated in Figure 3.38.

How does the connection use the variable rwnd to provide the flow-control
service? Host B tells Host A how much spare room it has in the connection buffer
by placing its current value of rwnd in the receive window field of every segment it
sends to A. Initially, Host B sets rwnd = RcvBuf fer. Note that to pull this off,
Host B must keep track of several connection-specific variables.

Host A in turn keeps track of two variables, LastByteSent and Last-
ByteAcked, which have obvious meanings. Note that the difference between these
two variables, LastByteSent — LastByteAcked, is the amount of unac-
knowledged data that A has sent into the connection. By keeping the amount of
unacknowledged data less than the value of rwnd, Host A is assured that it is not
overflowing the receive buffer at Host B. Thus, Host A makes sure throughout the
connection’s life that

LastByteSent — LastByteAcked = rwnd

263

264

CHAPTER 3

* TRANSPORT LAYER

There is one minor technical problem with this scheme. To see this, suppose
Host B’s receive buffer becomes full so that rwnd = 0. After advertising rwnd =0
to Host A, also suppose that B has nothing to send to A. Now consider what hap-
pens. As the application process at B empties the buffer, TCP does not send new seg-
ments with new rwnd values to Host A; indeed, TCP sends a segment to Host A
only if it has data to send or if it has an acknowledgment to send. Therefore, Host A
is never informed that some space has opened up in Host B’s receive buffer—Host
A is blocked and can transmit no more data! To solve this problem, the TCP specifi-
cation requires Host A to continue to send segments with one data byte when B’s
receive window is zero. These segments will be acknowledged by the receiver.
Eventually the buffer will begin to empty and the acknowledgments will contain a
nonzero rwnd value.

The online site at http://www.awl.com/kurose-ross for this book provides an
interactive Java applet that illustrates the operation of the TCP receive window.

Having described TCP’s flow-control service, we briefly mention here that UDP
does not provide flow control. To understand the issue, consider sending a series of
UDP segments from a process on Host A to a process on Host B. For a typical UDP
implementation, UDP will append the segments in a finite-sized buffer that “precedes”
the corresponding socket (that is, the door to the process). The process reads one entire
segment at a time from the buffer. If the process does not read the segments fast
enough from the buffer, the buffer will overflow and segments will get dropped.

3.5.6 TCP Connection Management

In this subsection we take a closer look at how a TCP connection is established and
torn down. Although this topic may not seem particularly thrilling, it is important
because TCP connection establishment can significantly add to perceived delays
(for example, when surfing the Web). Furthermore, many of the most common net-
work attacks—including the incredibly popular SYN flood attack—exploit vulnera-
bilities in TCP connection management. Let’s first take a look at how a TCP
connection is established. Suppose a process running in one host (client) wants to
initiate a connection with another process in another host (server). The client appli-
cation process first informs the client TCP that it wants to establish a connection to
a process in the server. The TCP in the client then proceeds to establish a TCP con-
nection with the TCP in the server in the following manner:

e Step 1. The client-side TCP first sends a special TCP segment to the server-side
TCP. This special segment contains no application-layer data. But one of the flag
bits in the segment’s header (see Figure 3.29), the SYN bit, is set to 1. For this
reason, this special segment is referred to as a SYN segment. In addition, the
client randomly chooses an initial sequence number (client isn) and puts
this number in the sequence number field of the initial TCP SYN segment. This
segment is encapsulated within an IP datagram and sent to the server. There has

http://www.awl.com/kurose-ross

3.5 « CONNECTION-ORIENTED TRANSPORT: TCP

been considerable interest in properly randomizing the choice of the
client isnin order to avoid certain security attacks [CERT 2001-09].

* Step 2. Once the IP datagram containing the TCP SYN segment arrives at the
server host (assuming it does arrive!), the server extracts the TCP SYN segment
from the datagram, allocates the TCP buffers and variables to the connection, and
sends a connection-granted segment to the client TCP. (We’ll see in Chapter 8 that
the allocation of these buffers and variables before completing the third step of the
three-way handshake makes TCP vulnerable to a denial-of-service attack known
as SYN flooding.) This connection-granted segment also contains no application-
layer data. However, it does contain three important pieces of information in the
segment header. First, the SYN bit is set to 1. Second, the acknowledgment field
of the TCP segment header is set to client_ isn+1. Finally, the server
chooses its own initial sequence number (server_isn) and puts this value in
the sequence number field of the TCP segment header. This connection-granted
segment is saying, in effect, “I received your SYN packet to start a connection
with your initial sequence number, client_isn. I agree to establish this con-
nection. My own initial sequence number is server_ _isn.” The connection-
granted segment is referred to as a SYNACK segment.

e Step 3. Upon receiving the SYNACK segment, the client also allocates buffers
and variables to the connection. The client host then sends the server yet another
segment; this last segment acknowledges the server’s connection-granted seg-
ment (the client does so by putting the value server isn+1 in the acknowl-
edgment field of the TCP segment header). The SYN bit is set to zero, since the
connection is established. This third stage of the three-way handshake may carry
client-to-server data in the segment payload.

Once these three steps have been completed, the client and server hosts can send
segments containing data to each other. In each of these future segments, the SYN bit
will be set to zero. Note that in order to establish the connection, three packets are sent
between the two hosts, as illustrated in Figure 3.39. For this reason, this connection-
establishment procedure is often referred to as a three-way handshake. Several
aspects of the TCP three-way handshake are explored in the homework problems
(Why are initial sequence numbers needed? Why is a three-way handshake, as
opposed to a two-way handshake, needed?). It’s interesting to note that a rock climber
and a belayer (who is stationed below the rock climber and whose job it is to handle
the climber’s safety rope) use a three-way-handshake communication protocol that is
identical to TCP’s to ensure that both sides are ready before the climber begins ascent.

All good things must come to an end, and the same is true with a TCP connec-
tion. Either of the two processes participating in a TCP connection can end the con-
nection. When a connection ends, the “resources” (that is, the buffers and variables)
in the hosts are deallocated. As an example, suppose the client decides to close the
connection, as shown in Figure 3.40. The client application process issues a close

265

266

CHAPTER 3

* TRANSPORT LAYER

Client host Server host

E

—
Connection
request

—— Connection
granted

ACK

Time Time

Figure 3.39 ¢ TCP three-way handshake: segment exchange

command. This causes the client TCP to send a special TCP segment to the server
process. This special segment has a flag bit in the segment’s header, the FIN bit
(see Figure 3.29), set to 1. When the server receives this segment, it sends the client
an acknowledgment segment in return. The server then sends its own shutdown
segment, which has the FIN bit set to 1. Finally, the client acknowledges the
server’s shutdown segment. At this point, all the resources in the two hosts are now
deallocated.

During the life of a TCP connection, the TCP protocol running in each host
makes transitions through various TCP states. Figure 3.41 illustrates a typical
sequence of TCP states that are visited by the client TCP. The client TCP begins in
the CLOSED state. The application on the client side initiates a new TCP connec-
tion (by creating a Socket object in our Java examples from Chapter 2). This causes
TCP in the client to send a SYN segment to TCP in the server. After having sent the
SYN segment, the client TCP enters the SYN_SENT state. While in the
SYN_SENT state, the client TCP waits for a segment from the server TCP that
includes an acknowledgment for the client’s previous segment and has the SYN bit
set to 1. Having received such a segment, the client TCP enters the ESTABLISHED
state. While in the ESTABLISHED state, the TCP client can send and receive TCP
segments containing payload (that is, application-generated) data.

3.5 « CONNECTION-ORIENTED TRANSPORT: TCP 267

Client Server
y
=
Close
FIN
ACK
Close
FIN
ACK
Timed wait
Closed
Time Time

Figure 3.40 ¢ Closing a TCP connection

Suppose that the client application decides it wants to close the connection.
(Note that the server could also choose to close the connection.) This causes the
client TCP to send a TCP segment with the FIN bit set to 1 and to enter the
FIN_WAIT 1 state. While in the FIN_WAIT _1 state, the client TCP waits for a TCP
segment from the server with an acknowledgment. When it receives this segment,
the client TCP enters the FIN_WAIT 2 state. While in the FIN_WAIT _2 state, the
client waits for another segment from the server with the FIN bit set to 1; after
receiving this segment, the client TCP acknowledges the server’s segment and
enters the TIME_WAIT state. The TIME_WAIT state lets the TCP client resend the
final acknowledgment in case the ACK is lost. The time spent in the TIME_WAIT
state is implementation-dependent, but typical values are 30 seconds, 1 minute, and
2 minutes. After the wait, the connection formally closes and all resources on the
client side (including port numbers) are released.

Figure 3.42 illustrates the series of states typically visited by the server-side
TCP, assuming the client begins connection teardown. The transitions are self-
explanatory. In these two state-transition diagrams, we have only shown how a TCP
connection is normally established and shut down. We have not described what

268 CHAPTER 3 TRANSPORT LAYER

Client application
initiates a TCP connection

CLOSED
Wait 30 seconds
Send SYN

TIME WAIT SYN_SENT

—

Receive FIN, Receive SYN & ACK,
send ACK send ACK
I 2 ESTABLISHED

Send FIN
Receive ACK,
send nothing FIN WAIT 1

Client application
initiates close connection

Figure 3.41 ¢ A typical sequence of TCP states visited by a client TCP

Server application
creates a listen socket

Receive ACK, CLOSED
send nothing \

LAST ACK
= LISTEN
Receive SYN
send FIN send SYN & ACK
CLOSE_WAIT SYN_RCVD
Receive FIN, Receive ACK,
send ACK send nothing

ESTABLISHED

Figure 3.42 ¢ A typical sequence of TCP states visited by a server-side TCP

3.5 « CONNECTION-ORIENTED TRANSPORT: TCP

"FOCUS ON SECURITY

THE SYN FLOOD ATTACK

We've seen in our discussion of TCP’s three-way handshake that a server allocates
and initializes connection variables and buffers in response to a received SYN. The
server then sends a SYNACK in response, and awaits an ACK segment from the
client, the third and final step in the handshake before fully establishing a connec-
tion. If the client does not send an ACK to complete the third step of the 3-way hand-
shake, eventually (often affer a minute or more) the server will terminate the half-open
connection and reclaim the allocated resources.

This TCP connection management protocol sets the stage for a classic DoS attack,
namely, the SYN flood attack. In this attack, the bad guy sends a large number of
TCP SYN segments, without completing the third handshake step. The attack can be
amplified by sending the SYNs from multiple sources, creating a DDo$ (distributed
Denial of Service) SYN flood attack. With this deluge of SYN segments, the server’s
connection resources can quickly become exhausted as they are allocated (but never
used!) for half-open connections. With the server’s resources exhausted, legitimate
clients are then denied service. Such SYN flooding attacks [CERT SYN 1996] were
among the first DoS attacks documented by CERT [CERT 2009].

SYN flooding is a potentially devastating attack. Fortunately, there is an effective
defense, called SYN cookies [Skoudis 2006; Cisco SYN 2009; Bernstein 2009],
now deployed in most major operating systems. SYN cookies work as follows:

o When the server receives a SYN segment, it does not know if the segment is com-
ing from a legitimate user or is part of a SYN flood attack. So the server does not
create a half-open TCP connection for this SYN. Instead, the server creates an ini-
tial TCP sequence number that is a complex function (hash function) of source and
destination IP addresses and port numbers of the SYN segment, as well as of a
secret number only known to the server. (The server uses the same secret number
for a large number of connections.) This carefully crafted initial sequence number
is the so-called “cookie.” The server then sends a SYNACK packet with this spe-
cial initial sequence number. Importantly, the server does not remember the cookie
or any other state information corresponding to the SYN.

o If the client is legitimate, then it will return an ACK segment. The server, upon
receiving this ACK, needs to verify that the ACK corresponds to some SYN sent
earlier. How is this done if the server maintains no memory about SYN segments?2
As you may have guessed, it is done with the cookie. Specifically, for a legitimate
ACK, the value in the acknowledgment field is equal to the sequence number in
the SYNACK plus one (see Figure 3.39). The server will then run the same func-
tion using the same fields in the ACK segment and the secret number. If the result
of the function plus one is the same as the acknowledgment number, the server

269

270

CHAPTER 3

* TRANSPORT LAYER

" FOCUS ON SECURITY

concludes that the ACK corresponds to an earlier SYN segment and is hence
valid. The server then creates a fully open connection along with a socket.

o On the other hand, if the client does not return an ACK segment, then the original
SYN has done no harm at the server, since the server hasn't allocated any
resources to it!

SYN cookies effectively eliminate the threat of a SYN flood attack. A variation of
the SYN flood attack is to have the malicious client return a valid ACK segment for
each SYNACK segment that the server generates. This will cause the server to estab-
lish fully open TCP connections, even if its operating system employs SYN cookies. If
tens of thousands of clients are being used (DDoS attack), each with a different
source IP address, then it becomes difficult for the server to distinguish between legiti-
mate and malicious sources. Thus, this “completed-handshake attack” can be more
difficult to defend against than the classic SYN flood attack.

happens in certain pathological scenarios, for example, when both sides of a con-
nection want to initiate or shut down at the same time. If you are interested in learn-
ing about this and other advanced issues concerning TCP, you are encouraged to see
Stevens’ comprehensive book [Stevens 1994].

Our discussion above has assumed that both the client and server are prepared
to communicate, i.e., that the server is listening on the port to which the client sends
its SYN segment. Let’s consider what happens when a host receives a TCP segment
whose port numbers or source IP address do not match with any of the ongoing
sockets in the host. For example, suppose a host receives a TCP SYN packet with
destination port 80, but the host is not accepting connections on port 80 (that is, it is
not running a Web server on port 80). Then the host will send a special reset seg-
ment to the source. This TCP segment has the RST flag bit (see Section 3.5.2) set to
1. Thus, when a host sends a reset segment, it is telling the source “I don’t have a
socket for that segment. Please do not resend the segment.” When a host receives a
UDP packet whose destination port number doesn’t match with an ongoing UDP
socket, the host sends a special ICMP datagram, as discussed in Chapter 4.

Now that we have a good understanding of TCP connection management, let’s
revisit the nmap port-scanning tool and examine more closely how it works. To explore
a specific TCP port, say port 6789, on a target host, nmap will send a TCP SYN seg-
ment with destination port 6789 to that host. There are three possible outcomes:

o The source host receives a TCP SYNACK segment from the target host. Since this
means that an application is running with TCP port 6789 on the target post, nmap
returns “open.”

3.6 « PRINCIPLES OF CONGESTION CONTROL

e The source host receives a TCP RST segment from the target host. This means that
the SYN segment reached the target host, but the target host is not running an appli-
cation with TCP port 6789. But the attacker at least knows that the segments des-
tined to the host at port 6789 are not blocked by any firewall on the path between
source and target hosts. (Firewalls are discussed in Chapter 8.)

* The source receives nothing. This likely means that the SYN segment was blocked
by an intervening firewall and never reached the target host.

Nmap is a powerful tool, which can “case the joint” not only for open TCP ports,
but also for open UDP ports, for firewalls and their configurations, and even for the ver-
sions of applications and operating systems. Most of this done by manipulating TCP
connection-management segments [Skoudis 2006]. If you happen to be sitting near a
Linux machine, you may want to give nmap a whirl right now by simply typing
“nmap” at the command line. You can download nmap for other operating systems
from http://insecure.org/nmap.

This completes our introduction to error control and flow control in TCP. In
Section 3.7 we’ll return to TCP and look at TCP congestion control in some depth.
Before doing so, however, we first step back and examine congestion-control issues
in a broader context.

3.6 Principles of Congestion Control

In the previous sections, we examined both the general principles and specific
TCP mechanisms used to provide for a reliable data transfer service in the face of
packet loss. We mentioned earlier that, in practice, such loss typically results from
the overflowing of router buffers as the network becomes congested. Packet
retransmission thus treats a symptom of network congestion (the loss of a specific
transport-layer segment) but does not treat the cause of network congestion—too
many sources attempting to send data at too high a rate. To treat the cause of net-
work congestion, mechanisms are needed to throttle senders in the face of network
congestion.

In this section, we consider the problem of congestion control in a general con-
text, seeking to understand why congestion is a bad thing, how network congestion
is manifested in the performance received by upper-layer applications, and various
approaches that can be taken to avoid, or react to, network congestion. This more
general study of congestion control is appropriate since, as with reliable data trans-
fer, it is high on our “top-ten” list of fundamentally important problems in network-
ing. We conclude this section with a discussion of congestion control in the
available bit-rate (ABR) service in asynchronous transfer mode (ATM)
networks. The following section contains a detailed study of TCP’s congestion-
control algorithm.

271

http://insecure.org/nmap

272

CHAPTER 3

* TRANSPORT LAYER

3.6.1 The Causes and the Costs of Congestion

Let’s begin our general study of congestion control by examining three increasingly
complex scenarios in which congestion occurs. In each case, we’ll look at why con-
gestion occurs in the first place and at the cost of congestion (in terms of resources
not fully utilized and poor performance received by the end systems). We’ll not (yet)
focus on how to react to, or avoid, congestion but rather focus on the simpler issue
of understanding what happens as hosts increase their transmission rate and the net-
work becomes congested.

Scenario 1: Two Senders, a Router with Infinite Buffers

We begin by considering perhaps the simplest congestion scenario possible: Two
hosts (A and B) each have a connection that shares a single hop between source and
destination, as shown in Figure 3.43.

Let’s assume that the application in Host A is sending data into the connection
(for example, passing data to the transport-level protocol via a socket) at an average
rate of A, bytes/sec. These data are original in the sense that each unit of data is sent
into the socket only once. The underlying transport-level protocol is a simple one.
Data is encapsulated and sent; no error recovery (for example, retransmission), flow
control, or congestion control is performed. Ignoring the additional overhead due to
adding transport- and lower-layer header information, the rate at which Host A offers
traffic to the router in this first scenario is thus \, bytes/sec. Host B operates in a sim-
ilar manner, and we assume for simplicity that it too is sending at a rate of A,
bytes/sec. Packets from Hosts A and B pass through a router and over a shared

Ain: original data Aout
Host A Host B Host C Host D
Q i f Q Q | I B
r — y — r — —
—— — = =
= =
)

\

Unlimited shared
output link buffers

Figure 3.43 ¢ Congestion scenario 1: Two connections sharing a single
hop with infinite buffers

3.6 « PRINCIPLES OF CONGESTION CONTROL

outgoing link of capacity R. The router has buffers that allow it to store incoming
packets when the packet-arrival rate exceeds the outgoing link’s capacity. In this first
scenario, we assume that the router has an infinite amount of buffer space.

Figure 3.44 plots the performance of Host A’s connection under this first sce-
nario. The left graph plots the per-connection throughput (number of bytes per
second at the receiver) as a function of the connection-sending rate. For a sending
rate between 0 and R/2, the throughput at the receiver equals the sender’s sending
rate—everything sent by the sender is received at the receiver with a finite delay.
When the sending rate is above R/2, however, the throughput is only R/2. This upper
limit on throughput is a consequence of the sharing of link capacity between two
connections. The link simply cannot deliver packets to a receiver at a steady-state
rate that exceeds R/2. No matter how high Hosts A and B set their sending rates, they
will each never see a throughput higher than R/2.

Achieving a per-connection throughput of R/2 might actually appear to be a
good thing, because the link is fully utilized in delivering packets to their destina-
tions. The right-hand graph in Figure 3.44, however, shows the consequence of
operating near link capacity. As the sending rate approaches R/2 (from the left), the
average delay becomes larger and larger. When the sending rate exceeds R/2, the
average number of queued packets in the router is unbounded, and the average delay
between source and destination becomes infinite (assuming that the connections
operate at these sending rates for an infinite period of time and there is an infinite
amount of buffering available). Thus, while operating at an aggregate throughput of
near R may be ideal from a throughput standpoint, it is far from ideal from a delay
standpoint. Even in this (extremely) idealized scenario, we’ve already found one
cost of a congested network—large queuing delays are experienced as the packet-
arrival rate nears the link capacity.

R/2—

}“out
Delay

=
N
2
N

a. b.

Figure 3.44 ¢ Congestion scenario 1: Throughput and delay as a function
of host sending rate

273

274 CHAPTER 3

* TRANSPORT LAYER

Scenario 2: Two Senders and a Router with Finite Buffers

Let us now slightly modify scenario 1 in the following two ways (see Figure 3.45).
First, the amount of router buffering is assumed to be finite. A consequence of this
real-world assumption is that packets will be dropped when arriving to an already-
full buffer. Second, we assume that each connection is reliable. If a packet contain-
ing a transport-level segment is dropped at the router, the sender will eventually
retransmit it. Because packets can be retransmitted, we must now be more careful
with our use of the term sending rate. Specifically, let us again denote the rate at
which the application sends original data into the socket by A, bytes/sec. The rate at
which the transport layer sends segments (containing original data and retransmit-
ted data) into the network will be denoted A/ bytes/sec. N/ is sometimes referred to
as the offered load to the network.

The performance realized under scenario 2 will now depend strongly on
how retransmission is performed. First, consider the unrealistic case that Host A is
able to somehow (magically!) determine whether or not a buffer is free in the router
and thus sends a packet only when a buffer is free. In this case, no loss would occur,
\,, would be equal to \| , and the throughput of the connection would be equal to
\,,- This case is shown in Figure 3.46(a). From a throughput standpoint, perform-
ance is ideal—everything that is sent is received. Note that the average host sending
rate cannot exceed R/2 under this scenario, since packet loss is assumed never
to occur.

Ain: Original data

Nin: original data, plus

retransmitted data Xout
Host A Host B Host C Host D
‘ [] Y A
5 T 5 5
= — _— =
>
_J
. —

Finite shared output
link buffers

Figure 3.45 ¢ Scenario 2: Two hosts (with retransmissions) and a router
with finite buffers

3.6 « PRINCIPLES OF CONGESTION CONTROL

Consider next the slightly more realistic case that the sender retransmits only
when a packet is known for certain to be lost. (Again, this assumption is a bit of a
stretch. However, it is possible that the sending host might set its timeout large
enough to be virtually assured that a packet that has not been acknowledged has
been lost.) In this case, the performance might look something like that shown in
Figure 3.46(b). To appreciate what is happening here, consider the case that the
offered load, N (the rate of original data transmission plus retransmissions), equals
R/2. According to Figure 3.46(b), at this value of the offered load, the rate at which
data are delivered to the receiver application is R/3. Thus, out of the 0.5R units of
data transmitted, 0.333R bytes/sec (on average) are original data and 0.166R bytes/
sec (on average) are retransmitted data. We see here another cost of a congested net-
work—the sender must perform retransmissions in order to compensate for dropped
(lost) packets due to buffer overflow.

Finally, let us consider the case that the sender may time out prematurely and
retransmit a packet that has been delayed in the queue but not yet lost. In this case,
both the original data packet and the retransmission may reach the receiver. Of
course, the receiver needs but one copy of this packet and will discard the retrans-
mission. In this case, the work done by the router in forwarding the retransmitted
copy of the original packet was wasted, as the receiver will have already received
the original copy of this packet. The router would have better used the link trans-
mission capacity to send a different packet instead. Here then is yet another cost of
a congested network—unneeded retransmissions by the sender in the face of large
delays may cause a router to use its link bandwidth to forward unneeded copies of a
packet. Figure 3.46 (c) shows the throughput versus offered load when each packet
is assumed to be forwarded (on average) twice by the router. Since each packet is
forwarded twice, the throughput will have an asymptotic value of R/4 as the offered
load approaches R/2.

77 2 77 , RI2-

kout

=3
< R4~ —————————

a. b. C.

Figure 3.46 ¢ Scenario 2 performance with finite buffers

275

276

CHAPTER 3 TRANSPORT LAYER
Scenario 3: Four Senders, Routers with Finite Buffers, and
Multihop Paths
In our final congestion scenario, four hosts transmit packets, each over overlapping
two-hop paths, as shown in Figure 3.47. We again assume that each host uses a time-
out/retransmission mechanism to implement a reliable data transfer service, that all
hosts have the same value of \; , and that all router links have capacity R bytes/sec.
Let’s consider the connection from Host A to Host C, passing through routers
R1 and R2. The A-C connection shares router R1 with the D—B connection and
shares router R2 with the B-D connection. For extremely small values of N buffer
overflows are rare (as in congestion scenarios 1 and 2), and the throughput approxi-
mately equals the offered load. For slightly larger values of A, , the corresponding
throughput is also larger, since more original data is being transmitted into the net-
work and delivered to the destination, and overflows are still rare. Thus, for small
values of A, an increase in Ny, results in an increase in Nour
Ain: original data
N @ original Aout
data, plus
retransmitted
Host A data Host B
A A .
B e
= == =
W
R1
1 i
R4 ' R2
® 4 F K)
* Finite shared output *
Host & link buffers plost C
>=<
— i —
R3

Figure 3.47 ¢ Four senders, routers with finite buffers, and multihop paths

3.6 « PRINCIPLES OF CONGESTION CONTROL

Having considered the case of extremely low traffic, let’s next examine the case
that A, (and hence \.) is extremely large. Consider router R2. The A—C traffic arriving
to router R2 (which arrives at R2 after being forwarded from R1) can have an arrival
rate at R2 that is at most R, the capacity of the link from R1 to R2, regardless of the
value of N, . If N/ is extremely large for all connections (including the B-D connec-
tion), then the arrival rate of B-D traffic at R2 can be much larger than that of the A—C
traffic. Because the A—C and B-D traffic must compete at router R2 for the limited
amount of buffer space, the amount of A—C traffic that successfully gets through R2
(that is, is not lost due to buffer overflow) becomes smaller and smaller as the offered
load from B—D gets larger and larger. In the limit, as the offered load approaches infin-
ity, an empty buffer at R2 is immediately filled by a B-D packet, and the throughput of
the A—C connection at R2 goes to zero. This, in turn, implies that the A—C end-to-end
throughput goes to zero in the limit of heavy traffic. These considerations give rise to
the offered load versus throughput tradeoff shown in Figure 3.48.

The reason for the eventual decrease in throughput with increasing offered load
is evident when one considers the amount of wasted work done by the network. In
the high-traffic scenario outlined above, whenever a packet is dropped at a second-
hop router, the work done by the first-hop router in forwarding a packet to the sec-
ond-hop router ends up being “wasted.” The network would have been equally well
off (more accurately, equally bad off) if the first router had simply discarded that
packet and remained idle. More to the point, the transmission capacity used at the
first router to forward the packet to the second router could have been much more
profitably used to transmit a different packet. (For example, when selecting a packet
for transmission, it might be better for a router to give priority to packets that have
already traversed some number of upstream routers.) So here we see yet another cost
of dropping a packet due to congestion—when a packet is dropped along a path, the

R/2 —

?‘out

Figure 3.48 ¢ Scenario 3 performance with finite buffers and multihop
paths

277

278

CHAPTER 3

* TRANSPORT LAYER

transmission capacity that was used at each of the upstream links to forward that
packet to the point at which it is dropped ends up having been wasted.

3.6.2 Approaches to Congestion Control

In Section 3.7, we’ll examine TCP’s specific approach to congestion control in great
detail. Here, we identify the two broad approaches to congestion control that are
taken in practice and discuss specific network architectures and congestion-control
protocols embodying these approaches.

At the broadest level, we can distinguish among congestion-control approaches
by whether the network layer provides any explicit assistance to the transport layer
for congestion-control purposes:

* End-to-end congestion control. In an end-to-end approach to congestion control,
the network layer provides no explicit support to the transport layer for congestion-
control purposes. Even the presence of congestion in the network must be inferred
by the end systems based only on observed network behavior (for example, packet
loss and delay). We will see in Section 3.7 that TCP must necessarily take this end-
to-end approach toward congestion control, since the IP layer provides no feedback
to the end systems regarding network congestion. TCP segment loss (as indicated
by a timeout or a triple duplicate acknowledgment) is taken as an indication of net-
work congestion and TCP decreases its window size accordingly. We will also see
a more recent proposal for TCP congestion control that uses increasing round-trip
delay values as indicators of increased network congestion.

* Network-assisted congestion control. With network-assisted congestion control,
network-layer components (that is, routers) provide explicit feedback to the
sender regarding the congestion state in the network. This feedback may be as
simple as a single bit indicating congestion at a link. This approach was taken in
the early IBM SNA [Schwartz 1982] and DEC DECnet [Jain 1989; Ramakrish-
nan 1990] architectures, was recently proposed for TCP/IP networks [Floyd TCP
1994; RFC 3168], and is used in ATM available bit-rate (ABR) congestion con-
trol as well, as discussed below. More sophisticated network feedback is also pos-
sible. For example, one form of ATM ABR congestion control that we will study
shortly allows a router to inform the sender explicitly of the transmission rate it
(the router) can support on an outgoing link. The XCP protocol [Katabi 2002] pro-
vides router-computed feedback to each source, carried in the packet header,
regarding how that source should increase or decrease its transmission rate.

For network-assisted congestion control, congestion information is typically
fed back from the network to the sender in one of two ways, as shown in Figure
3.49. Direct feedback may be sent from a network router to the sender. This form of
notification typically takes the form of a choke packet (essentially saying, “I"'m
congested!”). The second form of notification occurs when a router marks/updates a

3.6 « PRINCIPLES OF CONGESTION CONTROL 279

Host A Host B
Q 1 Network feedback via receiver §
®
r — y ot
= Direct network =
feedback

\,@\;@’:@J
st et

Figure 3.49 ¢ Two feedback pathways for network-indicated congestion
information

field in a packet flowing from sender to receiver to indicate congestion. Upon
receipt of a marked packet, the receiver then notifies the sender of the congestion
indication. Note that this latter form of notification takes at least a full round-trip
time.

3.6.3 Network-Assisted Congestion-Control Example:
ATM ABR Congestion Control

We conclude this section with a brief case study of the congestion-control algorithm
in ATM ABR—a protocol that takes a network-assisted approach toward congestion
control. We stress that our goal here is not to describe aspects of the ATM architec-
ture in great detail, but rather to illustrate a protocol that takes a markedly different
approach toward congestion control from that of the Internet’s TCP protocol.
Indeed, we only present below those few aspects of the ATM architecture that are
needed to understand ABR congestion control.

Fundamentally ATM takes a virtual-circuit (VC) oriented approach toward packet
switching. Recall from our discussion in Chapter 1, this means that each switch on the
source-to-destination path will maintain state about the source-to-destination VC. This
per-VC state allows a switch to track the behavior of individual senders (e.g., tracking
their average transmission rate) and to take source-specific congestion-control actions
(such as explicitly signaling to the sender to reduce its rate when the switch becomes
congested). This per-VC state at network switches makes ATM ideally suited to
perform network-assisted congestion control.

280

CHAPTER 3

* TRANSPORT LAYER

Source Destination

Q A r
r —

—

Switch Switch

- - 3
_\\ 1 ./

‘ RM cells Data cells

Key:

Figure 3.50 ¢ Congestion-control framework for ATM ABR service

ABR has been designed as an elastic data transfer service in a manner reminis-
cent of TCP. When the network is underloaded, ABR service should be able to take
advantage of the spare available bandwidth; when the network is congested, ABR
service should throttle its transmission rate to some predetermined minimum trans-
mission rate. A detailed tutorial on ATM ABR congestion control and traffic man-
agement is provided in [Jain 1996].

Figure 3.50 shows the framework for ATM ABR congestion control. In our dis-
cussion we adopt ATM terminology (for example, using the term swiftch rather than
router, and the term cell rather than packer). With ATM ABR service, data cells are
transmitted from a source to a destination through a series of intermediate switches.
Interspersed with the data cells are resource-management cells (RM cells); these
RM cells can be used to convey congestion-related information among the hosts and
switches. When an RM cell arrives at a destination, it will be turned around and sent
back to the sender (possibly after the destination has modified the contents of the
RM cell). It is also possible for a switch to generate an RM cell itself and send this
RM cell directly to a source. RM cells can thus be used to provide both direct net-
work feedback and network feedback via the receiver, as shown in Figure 3.50.

ATM ABR congestion control is a rate-based approach. That is, the sender
explicitly computes a maximum rate at which it can send and regulates itself accord-
ingly. ABR provides three mechanisms for signaling congestion-related information
from the switches to the receiver:

e EFCI bit. Each data cell contains an explicit forward congestion indication
(EFCI) bit. A congested network switch can set the EFCI bit in a data cell to 1
to signal congestion to the destination host. The destination must check the EFCI
bit in all received data cells. When an RM cell arrives at the destination, if the
most recently received data cell had the EFCI bit set to 1, then the destination

3.7 « TCP CONGESTION CONTROL

sets the congestion indication bit (the CI bit) of the RM cell to 1 and sends the
RM cell back to the sender. Using the EFCI in data cells and the CI bit in RM
cells, a sender can thus be notified about congestion at a network switch.

* CI and NI bits. As noted above, sender-to-receiver RM cells are interspersed
with data cells. The rate of RM cell interspersion is a tunable parameter, with
the default value being one RM cell every 32 data cells. These RM cells have a
congestion indication (CI) bit and a no increase (NI) bit that can be set by a
congested network switch. Specifically, a switch can set the NI bit in a passing
RM cell to 1 under mild congestion and can set the CI bit to 1 under severe
congestion conditions. When a destination host receives an RM cell, it will
send the RM cell back to the sender with its CI and NI bits intact (except that
CI may be set to 1 by the destination as a result of the EFCI mechanism
described above).

* ER setting. Each RM cell also contains a 2-byte explicit rate (ER) field. A con-
gested switch may lower the value contained in the ER field in a passing RM
cell. In this manner, the ER field will be set to the minimum supportable rate of
all switches on the source-to-destination path.

An ATM ABR source adjusts the rate at which it can send cells as a function of
the CI, NI, and ER values in a returned RM cell. The rules for making this rate
adjustment are rather complicated and a bit tedious. The interested reader is referred
to [Jain 1996] for details.

3.7 TCP Congestion Control

In this section we return to our study of TCP. As we learned in Section 3.5, TCP pro-
vides a reliable transport service between two processes running on different hosts.
Another key component of TCP is its congestion-control mechanism. As indicated
in the previous section, TCP must use end-to-end congestion control rather than net-
work-assisted congestion control, since the IP layer provides no explicit feedback to
the end systems regarding network congestion.

The approach taken by TCP is to have each sender limit the rate at which it
sends traffic into its connection as a function of perceived network congestion. If a
TCP sender perceives that there is little congestion on the path between itself and
the destination, then the TCP sender increases its send rate; if the sender perceives
that there is congestion along the path, then the sender reduces its send rate. But this
approach raises three questions. First, how does a TCP sender limit the rate at which
it sends traffic into its connection? Second, how does a TCP sender perceive that
there is congestion on the path between itself and the destination? And third, what
algorithm should the sender use to change its send rate as a function of perceived
end-to-end congestion?

281

282

CHAPTER 3

* TRANSPORT LAYER

Let’s first examine how a TCP sender limits the rate at which it sends traffic
into its connection. In Section 3.5 we saw that each side of a TCP connection consists
of a receive buffer, a send buffer, and several variables (LastByteRead, rwnd,
and so on). The TCP congestion-control mechanism operating at the sender keeps
track of an additional variable, the congestion window. The congestion window,
denoted cwnd, imposes a constraint on the rate at which a TCP sender can send traffic
into the network. Specifically, the amount of unacknowledged data at a sender may
not exceed the minimum of cwnd and rwnd, that is:

LastByteSent — LastByteAcked = min{cwnd, rwnd}

In order to focus on congestion control (as opposed to flow control), let us hence-
forth assume that the TCP receive buffer is so large that the receive-window con-
straint can be ignored; thus, the amount of unacknowledged data at the sender is
solely limited by cwnd. We will also assume that the sender always has data to
send, i.e., that all segments in the congestion window are sent.

The constraint above limits the amount of unacknowledged data at the sender
and therefore indirectly limits the sender’s send rate. To see this, consider a connec-
tion for which loss and packet transmission delays are negligible. Then, roughly, at
the beginning of every RTT, the constraint permits the sender to send cwnd bytes of
data into the connection; at the end of the RTT the sender receives acknowledg-
ments for the data. Thus the sender’s send rate is roughly cwnd/RTT bytes/sec. By
adjusting the value of cwnd, the sender can therefore adjust the rate at which it
sends data into its connection.

Let’s next consider how a TCP sender perceives that there is congestion on the
path between itself and the destination. Let us define a “loss event” at a TCP sender
as the occurrence of either a timeout or the receipt of three duplicate ACKs from the
receiver. (Recall our discussion in Section 3.5.4 of the timeout event in Figure 3.33
and the subsequent modification to include fast retransmit on receipt of three dupli-
cate ACKs.) When there is excessive congestion, then one (or more) router buffers
along the path overflows, causing a datagram (containing a TCP segment) to be
dropped. The dropped datagram, in turn, results in a loss event at the sender—either
a timeout or the receipt of three duplicate ACKs—which is taken by the sender to
be an indication of congestion on the sender-to-receiver path.

Having considered how congestion is detected, let’s next consider the more opti-
mistic case when the network is congestion-free, that is, when a loss event doesn’t
occur. In this case, acknowledgements for previously unacknowledged segments will
be received at the TCP sender. As we’ll see, TCP will take the arrival of these
acknowledgements as an indication that all is well—that segments being transmitted
into the network are being successfully delivered to the destination—and will use
acknowledgements to increase its congestion window size (and hence its transmis-
sion rate). Note that if acknowledgements arrive at a relatively slow rate (e.g., if the
end-end path has high delay or contains a low-bandwidth link), then the congestion

3.7 « TCP CONGESTION CONTROL

window will be increased at a relatively slow rate. On the other hand, if acknowl-
edgements arrive at a high rate, then the congestion window will be increased more
quickly. Because TCP uses acknowledgements to trigger (or clock) its increase in
congestion window size, TCP is said to be self-clocking.

Given the mechanism of adjusting the value of cwnd to control the sending rate,
the critical question remains: How should a TCP sender determine the rate at which
it should send? If TCP senders collectively send too fast, they can congest the net-
work, leading to the type of congestion collapse that we saw in Figure 3.48. Indeed,
the version of TCP that we’ll study shortly was developed in response to observed
Internet congestion collapse [Jacobson 1988] under earlier versions of TCP. How-
ever, if TCP senders are too cautious and send too slowly, they could under utilize
the bandwidth in the network; that is, the TCP senders could send at a higher rate
without congesting the network. How then do the TCP senders determine their send-
ing rates such that they don’t congest the network but at the same time make use of
all the available bandwidth? Are TCP senders explicitly coordinated, or is there a
distributed approach in which the TCP senders can set their sending rates based only
on local information? TCP answers these questions using the following guiding
principles:

* A lost segment implies congestion, and hence, the TCP sender’s rate should be
decreased when a segment is lost. Recall from our discussion in Section 3.5.4,
that a timeout event or the receipt of four acknowledgments for a given segment
(one original ACK and then three duplicate ACKs) is interpreted as an implicit
“loss event” indication of the segment following the quadruply ACKed segment,
triggering a retransmission of the lost segment. From a congestion-control stand-
point, the question is how the TCP sender should decrease its congestion win-
dow size, and hence its sending rate, in response to this inferred loss event.

* An acknowledged segment indicates that the network is delivering the sender’s
segments to the receiver, and hence, the sender’s rate can be increased when an
ACK arrives for a previously unacknowledged segment. The arrival of acknowl-
dgments is taken as an implicit indication that all is well—segments are being
successfully delivered from sender to receiver, and the network is thus not con-
gested. The congestion window size can thus be increased.

* Bandwidth probing. Given ACKs indicating a congestion-free source-to-destination
path and loss events indicating a congested path, TCP’s strategy for adjusting its
transmission rate is to increase its rate in response to arriving ACKs until a loss
event occurs, at which point, the transmission rate is decreased. The TCP sender
thus increases its transmission rate to probe for the rate that at which congestion
onset begins, backs off from that rate, and then to begins probing again to see if
the congestion onset rate has changed. The TCP sender’s behavior is perhaps anal-
ogous to the child who requests (and gets) more and more goodies until finally
he/she is finally told “No!”, backs off a bit, but then begins making requests

283

284

CHAPTER 3

* TRANSPORT LAYER

again shortly afterwards. Note that there is no explicit signaling of congestion
state by the network—ACKSs and loss events serve as implicit signals—and that
each TCP sender acts on local information asynchronously from other TCP
senders.

Given this overview of TCP congestion control, we’re now in a position to consider
the details of the celebrated TCP congestion-control algorithm, which was first
described in [Jacobson 1988] and is standardized in [RFC 2581]. The algorithm has
three major components: (1) slow start, (2) congestion avoidance, and (3) fast recov-
ery. Slow start and congestion avoidance are mandatory components of TCP, differ-
ing in how they increase the size of cwnd in response to received ACKs. We'll see
shortly that slow start increases the size of cwnd more rapidly (despite its name!)
than congestion avoidance. Fast recovery is recommended, but not required, for
TCP senders.

Slow Start

When a TCP connection begins, the value of cwnd is typically initialized to a small
value of 1 MSS [RFC 3390], resulting in an initial sending rate of roughly
MSS/RTT. For example, if MSS = 500 bytes and RTT = 200 msec, the resulting ini-
tial sending rate is only about 20 kbps. Since the available bandwidth to the TCP
sender may be much larger than MSS/RTT, the TCP sender would like to find the
amount of available bandwidth quickly. Thus, in the slow-start state, the value of
cwnd begins at 1 MSS and increases by 1 MSS every time a transmitted segment is
first acknowledged. In the example of Figure 3.51, TCP sends the first segment into
the network and waits for an acknowledgment. When this acknowledgment arrives,
the TCP sender increases the congestion window by one MSS and sends out two
maximum-sized segments. These segments are then acknowledged, with the sender
increasing the congestion window by 1 MSS for each of the acknowledged seg-
ments, giving a congestion window of 4 MSS, and so on. This process results in a
doubling of the sending rate every RTT. Thus, the TCP send rate starts slow but
grows exponentially during the slow start phase.

But when should this exponential growth end? Slow start provides several
answers to this question. First, if there is a loss event (i.e., congestion) indicated by
a timeout, the TCP sender sets the value of cwnd to 1 and begins the slow start
process anew. It also sets the value of a second state variable, ssthresh (short-
hand for “slow start threshold”) to cwnd/2—half of the value of the congestion win-
dow value when congestion was detected. The second way in which slow start may
end is directly tied to the value of ssthresh. Since ssthresh is half the value
of cwnd when congestion was last detected, it might be a bit reckless to keep dou-
bling cwnd when it reaches or surpasses the value of ssthresh. Thus, when the
value of cwnd equals ssthresh, slow start ends and TCP transitions into congestion
avoidance mode. As we’ll see, TCP increases cwnd more cautiously when in

3.7 « TCP CONGESTION CONTROL 285

Host A Host B

Time Time

Figure 3.51 ¢ TCP slow start

congestion-avoidance mode. The final way in which slow start can end is if three dupli-
cate ACKs are detected, in which case TCP performs a fast retransmit (see Section
3.5.4) and enters the fast recovery state, as discussed below. TCP’s behavior in slow
start is summarized in the FSM description of TCP congestion control in Figure
3.52. The slow-start algorithm traces it roots to [Jacobson 1988]; an approach simi-
lar to slow start was also proposed independently in [Jain 1986].

Congestion Avoidance

On entry to the congestion-avoidance state, the value of cwnd is approximately half
its value when congestion was last encountered—congestion could be just around
the corner! Thus, rather than doubling the value of cwnd every RTT, TCP adopts a
more conservative approach and increases the value of cwnd by just a single MSS
every RTT [RFC 2581]. This can be accomplished in several ways. A common
approach is for the TCP sender to increase cwnd by MSS bytes (MSS/cwnd) when-
ever a new acknowledgment arrives. For example, if MSS is 1,460 bytes and cwnd

286 CHAPTER 3 TRANSPORT LAYER

duplicate ACK

new ACK

cwnd=cwnd+MSS

new ACK

cwnd=cwnd+MSS « (MSS/cwnd)

dupACKcount ++ dupACKcount=0 dupACKcount=0
transmit new segment(s), as allowed transmit new segment(s), as allowed
A
cwnd=1 MSS
ssthresh=64 KB cwnd 2 ssthresh
dupACKcount=0 ~_ A
~, .
A Slow » Congestion
start < avoidance

timeout timeout

duplicate ACK
ssthresh=cwnd/2 _

cwnd=1 MSS
dupACKcount=0
retransmit missing segment

ssthresh=cwnd/2
cwnd=1 MSS
dupACKcount=0
retransmit missing segment

dupACKcount++

timeout

new ACK
ssthresh=cwnd/2 w

cwnd=1 cwnd=ssthresh
dupACKcount=0 dupACKcount=0
retransmit missing segment

dupACKcount== dupACKcount==

ssthresh=cwnd/2
cwnd=ssthresh+3
retransmit missing segment

ssthresh=cwnd/2
cwnd=ssthresh+3
retransmit missing segment

Fast
recovery

duplicate ACK

cwnd=cwnd+MSS
transmit new segment(s), as allowed

Figure 3.52 ¢ FSM description of TCP congestion control

is 14,600 bytes, then 10 segments are being sent within an RTT. Each arriving ACK
(assuming one ACK per segment) increases the congestion window size by 1/10
MSS, and thus, the value of the congestion window will have increased by one MSS
after ACKs when all 10 segments have been received.

But when should congestion avoidance’s linear increase (of 1 MSS per RTT)
end? TCP’s congestion-avoidance algorithm behaves the same when a timeout
occurs. As in the case of slow start: The value of cwnd is set to 1 MSS, and the
value of ssthresh is updated to half the value of cwnd when the loss event
occurred. Recall, however, that a loss event also can be triggered by a triple dupli-
cate ACK event. In this case, the network is continuing to deliver segments from
sender to receiver (as indicated by the receipt of duplicate ACKs). So TCP’s behav-

3.7 « TCP CONGESTION CONTROL 287

ior to this type of loss event should be less drastic than with a timeout-indicated loss:
TCP halves the value of cwnd (adding in 3 MSS for good measure to account for
the triple duplicate ACKs received) and records the value of ssthresh to be half
the value of cwnd when the triple duplicate ACKs were received. The fast-recovery
state is then entered.

Fast Recovery

In fast recovery, the value of cwnd is increased by 1 MSS for every duplicate ACK
received for the missing segment that caused TCP to enter the fast-recovery state.
Eventually, when an ACK arrives for the missing segment, TCP enters the
congestion-avoidance state after deflating cwnd. If a timeout event occurs, fast
recovery transitions to the slow-start state after performing the same actions as in
slow start and congestion avoidance: The value of cwnd is set to 1 MSS, and the
value of ssthresh is set to half the value of cwnd when the loss event occurred.

Fast recovery is a recommended, but not required, component of TCP [RFC
2581]. It is interesting that an early version of TCP, known as TCP Tahoe, uncondi-
tionally cut its congestion window to 1 MSS and entered the slow-start phase after
either a timeout-indicated or triple-duplicate-ACK-indicated loss event. The newer
version of TCP, TCP Reno, incorporated fast recovery.

Figure 3.53 illustrates the evolution of TCP’s congestion window for both Reno
and Tahoe. In this figure, the threshold is initially equal to 8 MSS. For the first eight
transmission rounds, Tahoe and Reno take identical actions. The congestion window
climbs exponentially fast during slow start and hits the threshold at the fourth round
of transmission. The congestion window then climbs linearly until a triple duplicate-
ACK event occurs, just after transmission round 8. Note that the congestion window
is 12 « MSS when this loss event occurs. The value of ssthresh is then set to

N
|

TCP Reno

ssthresh

(in segments)

ssthresh

Congestion window
~A o 0 O
[[

TCP Tahoe

0 r-rr—1T 11 1T T T T T T T T T"1]
01 2 3 4 5 6 7 8 9101112131415

Transmission round

Figure 3.53 ¢ Evolution of TCP’s congestion window (Tahoe and Reno)

288

CHAPTER 3

* TRANSPORT LAYER

0.5 * cwnd = 6 *« MSS. Under TCP Reno, the congestion window is set to cwnd =
6 * MSS and then grows linearly. Under TCP Tahoe, the congestion window is set to
1 MSS and grows exponentially until it reaches the value of ssthresh, at which
point it grows linearly.

Figure 3.52 presents the complete FSM description of TCP’s congestion-
control algorithms—slow start, congestion avoidance, and fast recovery. The figure
also indicates where transmission of new segments or retransmitted segments can
occur. Although it is important to distinguish between TCP error control/retransmis-
sion and TCP congestion control, it’s also important to appreciate how these two
aspects of TCP are inextricably linked.

TCP Congestion Control: Retrospective

Having delved into the details of slow start, congestion avoidance, and fast recov-
ery, it’s worthwhile to now step back and view the forest from the trees. Ignoring the
initial slow-start period when a connection begins and assuming that losses are indi-
cated by triple duplicate ACKs rather than timeouts, TCP’s congestion control con-
sists of linear (additive) increase in cwnd of 1 MSS per RTT and then a halving
(multiplicative decrease) of cwnd on a triple duplicate-ACK event. For this reason,
TCP congestion control is often referred to as an additive-increase, multiplicative-
decrease (AIMD) form of congestion control. AIMD congestion control gives rise
to the “saw tooth” behavior shown in Figure 3.54, which also nicely illustrates our
earlier intuition of TCP “probing” for bandwidth—TCP linearly increases its con-
gestion window size (and hence its transmission rate) until a triple duplicate-ACK
event occurs. It then decreases its congestion window size by a factor of two but
then again begins increasing it linearly, probing to see if there is additional available
bandwidth.

24 K+

16 K

8 K

Congestion window

v

Time

Figure 3.54 ¢ Additive-increase, multiplicative-decrease congestion control

3.7 « TCP CONGESTION CONTROL

As noted previously, most TCP implementations currently use the Reno algo-
rithm [Padhye 2001]. Many variations of the Reno algorithm have been proposed
[RFC 3782; RFC 2018]. The TCP Vegas algorithm [Brakmo 1995; Ahn 1995]
attempts to avoid congestion while maintaining good throughput. The basic idea of
Vegas is to (1) detect congestion in the routers between source and destination
before packet loss occurs and (2) lower the rate linearly when this imminent packet
loss is detected. Imminent packet loss is predicted by observing the RTT. The longer
the RTT of the packets, the greater the congestion in the routers. Linux supports a
number of congestion-control algorithms (including TCP Reno and TCP Vegas) and
allows a system administrator to configure which version of TCP will be used. The
default version of TCP in Linux version 2.6.18 was set to CUBIC [Ha 2008], a ver-
sion of TCP developed for high-bandwidth applications.

TCP’s AIMD algorithm was developed based on a tremendous amount of engi-
neering insight and experimentation with congestion control in operational net-
works. Ten years after TCP’s development, theoretical analyses showed that TCP’s
congestion-control algorithm serves as a distributed asynchronous-optimization
algorithm that results in several important aspects of user and network performance
being simultaneously optimized [Kelly 1998]. A rich theory of congestion control
has since been developed [Srikant 2004].

Macroscopic Description of TCP Throughput

Given the saw-toothed behavior of TCP, it’s natural to consider what the average
throughput (that is, the average rate) of a long-lived TCP connection might be. In this
analysis we’ll ignore the slow-start phases that occur after timeout events. (These
phases are typically very short, since the sender grows out of the phase exponentially
fast.) During a particular round-trip interval, the rate at which TCP sends data is a
function of the congestion window and the current R77. When the window size is w
bytes and the current round-trip time is R7T seconds, then TCP’s transmission rate is
roughly w/RTT. TCP then probes for additional bandwidth by increasing w by 1 MSS
each RTT until a loss event occurs. Denote by W the value of w when a loss event
occurs. Assuming that RT7T and W are approximately constant over the duration of
the connection, the TCP transmission rate ranges from W/(2 - RTT) to W/RTT.

These assumptions lead to a highly simplified macroscopic model for the
steady-state behavior of TCP. The network drops a packet from the connection when
the rate increases to W/RTT; the rate is then cut in half and then increases by
MSS/RTT every RTT until it again reaches W/RTT. This process repeats itself over
and over again. Because TCP’s throughput (that is, rate) increases linearly between
the two extreme values, we have

average throughput of a connection = —0-17?57,'7,W

289

290

CHAPTER 3

* TRANSPORT LAYER

Using this highly idealized model for the steady-state dynamics of TCP, we can
also derive an interesting expression that relates a connection’s loss rate to its avail-
able bandwidth [Mahdavi 1997]. This derivation is outlined in the homework prob-
lems. A more sophisticated model that has been found empirically to agree with
measured data is [Padhye 2000].

TCP Futures

It is important to realize that TCP congestion control has evolved over the years and
indeed continues to evolve. A summary of TCP congestion control as of the late
1990s can be found in [RFC 2581]; for a discussion of additional developments in
TCP congestion control, see [Floyd 2001]. What was good for the Internet when the
bulk of the TCP connections carried SMTP, FTP, and Telnet traffic is not necessarily
good for today’s HTTP-dominated Internet or for a future Internet with services that
are still undreamed of.

The need for continued evolution of TCP can be illustrated by considering the
high-speed TCP connections that are needed for grid-computing applications [Foster
2002]. For example, consider a TCP connection with 1,500-byte segments and a 100
ms RTT, and suppose we want to send data through this connection at 10 Gbps.
Following [RFC 3649], we note that using the TCP throughput formula above, in
order to achieve a 10 Gbps throughput, the average congestion window size would
need to be 83,333 segments. That’s a lot of segments, leading us to be rather con-
cerned that one of these 83,333 in-flight segments might be lost. What would happen
in the case of a loss? Or, put another way, what fraction of the transmitted segments
could be lost that would allow the TCP congestion-control algorithm specified in Fig-
ure 3.52 still to achieve the desired 10 Gbps rate? In the homework questions for this
chapter, you are led through the derivation of a formula relating the throughput of a
TCP connection as a function of the loss rate (L), the round-trip time (R77T), and the
maximum segment size (MSS):

1.22- MSS
RTT\L

Using this formula, we can see that in order to achieve a throughput of 10 Gbps,
today’s TCP congestion-control algorithm can only tolerate a segment loss probabil-
ity of 2 - 10-1° (or equivalently, one loss event for every 5,000,000,000 segments)—
a very low rate. This observation has led a number of researchers to investigate new
versions of TCP that are specifically designed for such high-speed environments;
see [Jin 2004; RFC 3649; Kelly 2003; Ha 2008] for discussions of these efforts.

average throughput of a connection=

3.7.1 Fairness

Consider K TCP connections, each with a different end-to-end path, but all passing
through a bottleneck link with transmission rate R bps. (By bottleneck link, we mean

3.7 « TCP CONGESTION CONTROL

that for each connection, all the other links along the connection’s path are not con-
gested and have abundant transmission capacity as compared with the transmission
capacity of the bottleneck link.) Suppose each connection is transferring a large file
and there is no UDP traffic passing through the bottleneck link. A congestion-con-
trol mechanism is said to be fair if the average transmission rate of each connection
is approximately R/K; that is, each connection gets an equal share of the link band-
width.

Is TCP’s AIMD algorithm fair, particularly given that different TCP connec-
tions may start at different times and thus may have different window sizes at a
given point in time? [Chiu 1989] provides an elegant and intuitive explanation of
why TCP congestion control converges to provide an equal share of a bottleneck
link’s bandwidth among competing TCP connections.

Let’s consider the simple case of two TCP connections sharing a single link
with transmission rate R, as shown in Figure 3.55. Assume that the two connections
have the same MSS and RTT (so that if they have the same congestion window size,
then they have the same throughput), that they have a large amount of data to send,
and that no other TCP connections or UDP datagrams traverse this shared link. Also,
ignore the slow-start phase of TCP and assume the TCP connections are operating
in CA mode (AIMD) at all times.

Figure 3.56 plots the throughput realized by the two TCP connections. If TCP is
to share the link bandwidth equally between the two connections, then the realized
throughput should fall along the 45-degree arrow (equal bandwidth share) emanat-
ing from the origin. Ideally, the sum of the two throughputs should equal R. (Cer-
tainly, each connection receiving an equal, but zero, share of the link capacity is not
a desirable situation!) So the goal should be to have the achieved throughputs fall
somewhere near the intersection of the equal bandwidth share line and the full band-
width utilization line in Figure 3.56.

Suppose that the TCP window sizes are such that at a given point in time, con-
nections 1 and 2 realize throughputs indicated by point A in Figure 3.56. Because
the amount of link bandwidth jointly consumed by the two connections is less than

Bottleneck
router capacity R

TCP connection 1

Figure 3.55 ¢ Two TCP connections sharing a single bottleneck link

291

292

CHAPTER 3

* TRANSPORT LAYER

A
R
Full bandwidth
utilization line
- Equal _
3 bandwidth
5 share
=}
e
s D
o~
c B
Ke)
G /
[J]
c
c /
S C
A
L
R

Connection 1 throughput

Figure 3.56 ¢ Throughput realized by TCP connections 1 and 2

R, no loss will occur, and both connections will increase their window by 1 MSS
per RTT as a result of TCP’s congestion-avoidance algorithm. Thus, the joint
throughput of the two connections proceeds along a 45-degree line (equal increase
for both connections) starting from point A. Eventually, the link bandwidth jointly
consumed by the two connections will be greater than R, and eventually packet loss
will occur. Suppose that connections 1 and 2 experience packet loss when they
realize throughputs indicated by point B. Connections 1 and 2 then decrease their
windows by a factor of two. The resulting throughputs realized are thus at point C,
halfway along a vector starting at B and ending at the origin. Because the joint
bandwidth use is less than R at point C, the two connections again increase their
throughputs along a 45-degree line starting from C. Eventually, loss will again
occur, for example, at point D, and the two connections again decrease their win-
dow sizes by a factor of two, and so on. You should convince yourself that the
bandwidth realized by the two connections eventually fluctuates along the equal
bandwidth share line. You should also convince yourself that the two connections
will converge to this behavior regardless of where they are in the two-dimensional
space! Although a number of idealized assumptions lie behind this scenario, it still
provides an intuitive feel for why TCP results in an equal sharing of bandwidth
among connections.

In our idealized scenario, we assumed that only TCP connections traverse the
bottleneck link, that the connections have the same RTT value, and that only a sin-

3.7 « TCP CONGESTION CONTROL

gle TCP connection is associated with a host-destination pair. In practice, these con-
ditions are typically not met, and client-server applications can thus obtain very
unequal portions of link bandwidth. In particular, it has been shown that when mul-
tiple connections share a common bottleneck, those sessions with a smaller RTT are
able to grab the available bandwidth at that link more quickly as it becomes free
(that is, open their congestion windows faster) and thus will enjoy higher through-
put than those connections with larger RTTs [Lakshman 1997].

Fairness and UDP

We have just seen how TCP congestion control regulates an application’s transmis-
sion rate via the congestion window mechanism. Many multimedia applications,
such as Internet phone and video conferencing, often do not run over TCP for this
very reason—they do not want their transmission rate throttled, even if the network
is very congested. Instead, these applications prefer to run over UDP, which does
not have built-in congestion control. When running over UDP, applications can
pump their audio and video into the network at a constant rate and occasionally lose
packets, rather than reduce their rates to “fair” levels at times of congestion and not
lose any packets. From the perspective of TCP, the multimedia applications running
over UDP are not being fair—they do not cooperate with the other connections nor
adjust their transmission rates appropriately. Because TCP congestion control will
decrease its transmission rate in the face of increasing congestion (loss), while UDP
sources need not, it is possible for UDP sources to crowd out TCP traffic. An area of
research today is thus the development of congestion-control mechanisms for the
Internet that prevent UDP traffic from bringing the Internet’s throughput to a grind-
ing halt [Floyd 1999; Floyd 2000; Kohler 2006].

Fairness and Parallel TCP Connections

But even if we could force UDP traffic to behave fairly, the fairness problem would
still not be completely solved. This is because there is nothing to stop a TCP-based
application from using multiple parallel connections. For example, Web browsers
often use multiple parallel TCP connections to transfer the multiple objects within
a Web page. (The exact number of multiple connections is configurable in most
browsers.) When an application uses multiple parallel connections, it gets a larger
fraction of the bandwidth in a congested link. As an example, consider a link of rate
R supporting nine ongoing client-server applications, with each of the applications
using one TCP connection. If a new application comes along and also uses one
TCP connection, then each application gets approximately the same transmission
rate of R/10. But if this new application instead uses 11 parallel TCP connections,
then the new application gets an unfair allocation of more than R/2. Because
Web traffic is so pervasive in the Internet, multiple parallel connections are not
uncommon.

293

294

CHAPTER 3

* TRANSPORT LAYER

3.8 Summary

We began this chapter by studying the services that a transport-layer protocol can
provide to network applications. At one extreme, the transport-layer protocol can be
very simple and offer a no-frills service to applications, providing only a multiplex-
ing/demultiplexing function for communicating processes. The Internet’s UDP pro-
tocol is an example of such a no-frills transport-layer protocol. At the other extreme,
a transport-layer protocol can provide a variety of guarantees to applications, such
as reliable delivery of data, delay guarantees, and bandwidth guarantees. Neverthe-
less, the services that a transport protocol can provide are often constrained by the
service model of the underlying network-layer protocol. If the network-layer proto-
col cannot provide delay or bandwidth guarantees to transport-layer segments, then
the transport-layer protocol cannot provide delay or bandwidth guarantees for the
messages sent between processes.

We learned in Section 3.4 that a transport-layer protocol can provide reliable
data transfer even if the underlying network layer is unreliable. We saw that provid-
ing reliable data transfer has many subtle points, but that the task can be accom-
plished by carefully combining acknowledgments, timers, retransmissions, and
sequence numbers.

Although we covered reliable data transfer in this chapter, we should keep in
mind that reliable data transfer can be provided by link-, network-, transport-, or
application-layer protocols. Any of the upper four layers of the protocol stack can
implement acknowledgments, timers, retransmissions, and sequence numbers and
provide reliable data transfer to the layer above. In fact, over the years, engineers
and computer scientists have independently designed and implemented link-, net-
work-, transport-, and application-layer protocols that provide reliable data transfer
(although many of these protocols have quietly disappeared).

In Section 3.5, we took a close look at TCP, the Internet’s connection-oriented
and reliable transport-layer protocol. We learned that TCP is complex, involving
connection management, flow control, and round-trip time estimation, as well as
reliable data transfer. In fact, TCP is actually more complex than our description—
we intentionally did not discuss a variety of TCP patches, fixes, and improvements
that are widely implemented in various versions of TCP. All of this complexity,
however, is hidden from the network application. If a client on one host wants to
send data reliably to a server on another host, it simply opens a TCP socket to the
server and pumps data into that socket. The client-server application is blissfully
unaware of TCP’s complexity.

In Section 3.6, we examined congestion control from a broad perspective, and
in Section 3.7, we showed how TCP implements congestion control. We learned that
congestion control is imperative for the well-being of the network. Without conges-
tion control, a network can easily become gridlocked, with little or no data being
transported end-to-end. In Section 3.7 we learned that TCP implements an end-to-end

3.8

congestion-control mechanism that additively increases its transmission rate when
the TCP connection’s path is judged to be congestion-free, and multiplicatively
decreases its transmission rate when loss occurs. This mechanism also strives to
give each TCP connection passing through a congested link an equal share of the
link bandwidth. We also examined in some depth the impact of TCP connection
establishment and slow start on latency. We observed that in many important sce-
narios, connection establishment and slow start significantly contribute to end-to-end
delay. We emphasize once more that while TCP congestion control has evolved over
the years, it remains an area of intensive research and will likely continue to evolve
in the upcoming years.

Our discussion of specific Internet transport protocols in this chapter has
focused on UDP and TCP—the two “work horses” of the Internet transport layer.
However, two decades of experience with these two protocols has identified
circumstances in which neither is ideally-suited. Researchers have thus been
busy developing additional transport-layer protocols, several of which are now
IETF proposed standards.

The Datagram Congestion Control Protocol (DCCP) [RFC 4340] provides a low-
overhead, message-oriented, UDP-like unreliable service, but with an application-
selected form of congestion control that is compatible with TCP. If reliable or
semi-reliable data transfer is needed by an application, then this would be performed
within the application itself, perhaps using the mechanisms we have studied in Section
3.4. DCCP is envisioned for use in applications such as streaming media (see Chapter 7)
that can exploit the tradeoff between timeliness and reliability of data delivery, but that
want to be responsive to network congestion.

The Stream Control Transmission Protocol (SCTP) [RFC 2960, RFC 3286] is a
reliable, message-oriented protocol that allows several different application-level
“streams” to be multiplexed through a single SCTP connection (an approach known as
“multi-streaming”). From a reliability standpoint, the different streams within the con-
nection are handled separately, so that packet loss in one stream does not affect the
delivery of data in other streams. SCTP also allows data to be transferred over two out-
going paths when a host is connected to two or more networks, optional delivery of out-
of-order data, and a number of other features. SCTP’s flow- and congestion-control
algorithms are essentially the same as in TCP.

The TCP-Friendly Rate Control (TFRC) protocol [RFC 5348] is a congestion-
control protocol rather than a full-fledged transport-layer protocol. It specifies a
congestion-control mechanism that could be used in anther transport protocol such as
DCCP (indeed one of the two application-selectable protocols available in DCCP is
TFRC). The goal of TFRC is to smooth out the “saw tooth” behavior (see Figure 3.54)
in TCP congestion control, while maintaining a long-term sending rate that is “reason-
ably” close to that of TCP. With a smoother sending rate than TCP, TFRC is well-suited
for multimedia applications such as IP telephony or streaming media where such a
smooth rate is important. TFRC is an “equation-based” protocol that uses the measured
packet loss rate as input to an equation [Padhye 2000] that estimates what TCP’s

SUMMARY

295

296

CHAPTER 3

* TRANSPORT LAYER

throughput would be if a TCP session experiences that loss rate. This rate is then taken
as TFRC’s target sending rate.

Only the future will tell whether DCCP, SCTP, or TFRC will see widespread
deployment. While these protocols clearly provide enhanced capabilities over TCP and
UDP, TCP and UDP have proven themselves “good enough’ over the years. Whether
“better” wins out over “good enough” will depend on a complex mix of technical,
social, and business considerations.

In Chapter 1, we said that a computer network can be partitioned into the “net-
work edge” and the “network core.” The network edge covers everything that hap-
pens in the end systems. Having now covered the application layer and the transport
layer, our discussion of the network edge is complete. It is time to explore the net-
work core! This journey begins in the next chapter, where we’ll study the network
layer, and continues into Chapter 5, where we’ll study the link layer.

m Homework Problems and Questions

Chapter 3 Review Questions
SECTIONS 3.1-3.3

R1. Suppose the network layer provides the following service. The network layer
in the source host accepts a segment of maximum size 1,200 bytes and a des-
tination host address from the transport layer. The network layer then guaran-
tees to deliver the segment to the transport layer at the destination host.
Suppose many network application processes can be running at the destina-
tion host.

a. Design the simplest possible transport-layer protocol that will get applica-
tion data to the desired process at the destination host. Assume the operat-
ing system in the destination host has assigned a 4-byte port number to
each running application process.

b. Modify this protocol so that it provides a “return address” to the destina-
tion process.

c. In your protocols, does the transport layer “have to do anything” in the
core of the computer network?

R2. Consider a planet where everyone belongs to a family of six, every family
lives in its own house, each house has a unique address, and each person in a
given house has a unique name. Suppose this planet has a mail service that
delivers letters from source house to destination house. The mail service
requires that (i) the letter be in an envelope and that (ii) the address of the
destination house (and nothing more) be clearly written on the envelope. Sup-
pose each family has a delegate family member who collects and distributes

R3.

R4.

RS.

R6.

R7.

RS.

HOMEWORK PROBLEMS AND QUESTIONS

letters for the other family members. The letters do not necessarily provide
any indication of the recipients of the letters.

a. Using the solution to Problem R1 above as inspiration, describe a protocol
that the delegates can use to deliver letters from a sending family member
to a receiving family member.

b. In your protocol, does the mail service ever have to open the envelope and
examine the letter in order to provide its service?

Consider a TCP connection between Host A and Host B. Suppose that the
TCP segments traveling from Host A to Host B have source port number x
and destination port number y. What are the source and destination port num-
bers for the segments traveling from Host B to Host A?

Describe why an application developer might choose to run an application
over UDP rather than TCP.

Why is it that voice and video traffic is often sent over TCP rather than UDP
in today’s Internet. (Hint: The answer we are looking for has nothing to do
with TCP’s congestion-control mechanism.)

Is it possible for an application to enjoy reliable data transfer even when the
application runs over UDP? If so, how?

Suppose a process in Host C has a UDP socket with port number 6789. Sup-
pose both Host A and Host B each send a UDP segment to Host C with desti-
nation port number 6789. Will both of these segments be directed to the same
socket at Host C? If so, how will the process at Host C know that these two
segments originated from two different hosts?

Suppose that a Web server runs in Host C on port 80. Suppose this Web
server uses persistent connections, and is currently receiving requests from
two different Hosts, A and B. Are all of the requests being sent through the
same socket at Host C? If they are being passed through different sockets, do
both of the sockets have port 80? Discuss and explain.

SECTION 3.4

RO.
R10.
RI11.

R12.

In our rdt protocols, why did we need to introduce sequence numbers?
In our rdt protocols, why did we need to introduce timers?

Suppose that the roundtrip delay between sender and receiver is constant and
known to the sender. Would a timer still be necessary in protocol rdt 3.0,
assuming that packets can be lost? Explain.

Visit the Go-Back-N Java applet at the companion Web site.

a. Have the source send five packets, and then pause the animation before
any of the five packets reach the destination. Then kill the first packet and
resume the animation. Describe what happens.

297

298

CHAPTER 3

* TRANSPORT LAYER

b.

C.

Repeat the experiment, but now let the first packet reach the destination
and kill the first acknowledgment. Describe again what happens.

Finally, try sending six packets. What happens?

R13. Repeat R12, but now with the Selective Repeat Java applet. How are Selec-
tive Repeat and Go-Back-N different?

SECTION 3.5
R14. True or false?

R15.

R16.

a.

Host A is sending Host B a large file over a TCP connection. Assume
Host B has no data to send Host A. Host B will not send acknowledg-
ments to Host A because Host B cannot piggyback the acknowledgments
on data.

The size of the TCP rwnd never changes throughout the duration of the
connection.

Suppose Host A is sending Host B a large file over a TCP connection. The
number of unacknowledged bytes that A sends cannot exceed the size of
the receive buffer.

. Suppose Host A is sending a large file to Host B over a TCP connection. If

the sequence number for a segment of this connection is m, then the
sequence number for the subsequent segment will necessarily be m + 1.

The TCP segment has a field in its header for rwnd.

. Suppose that the last SampleRTT in a TCP connection is equal to 1 sec.

The current value of TimeoutInterval for the connection will neces-
sarily be > 1 sec.

Suppose Host A sends one segment with sequence number 38 and 4 bytes
of data over a TCP connection to Host B. In this same segment the
acknowledgment number is necessarily 42.

Suppose Host A sends two TCP segments back to back to Host B over a TCP
connection. The first segment has sequence number 90; the second has
sequence number 110.

a.
b.

How much data is in the first segment?

Suppose that the first segment is lost but the second segment arrives at B.
In the acknowledgment that Host B sends to Host A, what will be the
acknowledgment number?

Consider the Telnet example discussed in Section 3.5. A few seconds after the

user types the letter ‘C,’ the user types the letter ‘R.” After typing the letter
‘R,” how many segments are sent, and what is put in the sequence number
and acknowledgment fields of the segments?

SECTION 3.7

R17. Suppose two TCP connections are present over some bottleneck link of rate R

R18.

bps. Both connections have a huge file to send (in the same direction over the
bottleneck link). The transmissions of the files start at the same time. What
transmission rate would TCP like to give to each of the connections?

True or false? Consider congestion control in TCP. When the timer expires at
the sender, the “value of ssthresh is set to one half of its previous value.

EE Problems

PI.

P2.

P3.

P4.

Suppose Client A initiates a Telnet session with Server S. At about the same
time, Client B also initiates a Telnet session with Server S. Provide possible
source and destination port numbers for
a. The segments sent from A to S.

. The segments sent from B to S.
. The segments sent from S to A.

b

c

d. The segments sent from S to B.

e. If A and B are different hosts, is it possible that the source port number in
the segments from A to S is the same as that from B to S?

f. How about if they are the same host?

Consider Figure 3.5. What are the source and destination port values in the seg-
ments flowing from the server back to the clients’ processes? What are the IP
addresses in the network-layer datagrams carrying the transport-layer segments?

UDP and TCP use 1s complement for their checksums. Suppose you have the
following three 8-bit bytes: 01010011, 01010100, 01110100. What is the 1s
complement of the sum of these 8-bit bytes? (Note that although UDP and
TCP use 16-bit words in computing the checksum, for this problem you are
being asked to consider 8-bit sums.) Show all work. Why is it that UDP takes
the 1s complement of the sum; that is, why not just use the sum? With the 1s
complement scheme, how does the receiver detect errors? Is it possible that a
1-bit error will go undetected? How about a 2-bit error?

a. Suppose you have the following 2 bytes: 01011100 and 01010110. What is
the 1s complement of the sum of these 2 bytes?

b. Suppose you have the following 2 bytes: 11011010 and 00110110. What is
the 1s complement of the sum of these 2 bytes?

c. For the bytes in part (a), give an example where one bit is flipped in each
of the 2 bytes and yet the 1s complement doesn’t change.

299

300 CHAPTER 3

rdt_rcv(rcvpkt) &&

(corrupt (rcvpkt)

N
has_seql (rcvpkt)))

* TRANSPORT LAYER

P5. Suppose that the UDP receiver computes the Internet checksum for the received
UDP segment and finds that it matches the value carried in the checksum field.
Can the receiver be absolutely certain that no bit errors have occurred? Explain.

P6. Consider our motivation for correcting protocol rdt2.1. Show that the
receiver, shown in Figure 3.57, when operating with the sender shown in Fig-
ure 3.11, can lead the sender and receiver to enter into a deadlock state, where
each is waiting for an event that will never occur.

P7. In protocol rdt3. 0, the ACK packets flowing from the receiver to the
sender do not have sequence numbers (although they do have an ACK field
that contains the sequence number of the packet they are acknowledging).
Why is it that our ACK packets do not require sequence numbers?

P8. Draw the FSM for the receiver side of protocol rdt3. 0.

P9. Give a trace of the operation of protocol rdt3 .0 when data packets and
acknowledgment packets are garbled. Your trace should be similar to that
used in Figure 3.16.

P10. Consider a channel that can lose packets but has a maximum delay that is
known. Modify protocol rdt2. 1 to include sender timeout and retransmit.
Informally argue why your protocol can communicate correctly over this
channel.

rdt_rvc (rcvpkt) && notcorrupt (rcvpkt)
&& has_seq0 (rcvpkt)

extract (rcvpkt,data)

deliver data(data)

compute chksum

make pkt (sendpkt,ACK, chksum)
udt_send (sndpkt)

rdt_rcv(rcvpkt) &&
/—\ (corrupt (rcvpkt) | ‘
has_seq0 (rcvpkt)))

compute chksum

Wait for Wait for make_pkt (sndpkt, NAK, chksum)
0 from 1 from
udt_ send (sndpkt)
below below -

compute chksum

make pkt (sndpkt,NAK, chksum) _/

udt_send (sndpkt)

rdt_rvec (rcvpkt) && notcorrupt (rcvpkt)
&& has_seql (rcvpkt)

extract (rcvpkt,data)
deliver_data(data)

compute chksum

make_pkt (sendpkt, ACK, chksum)
udt_send (sndpkt)

Figure 3.57 ¢ An incorrect receiver for protocol rdt 2.1

P11. The sender side of rdt3. 0 simply ignores (that is, takes no action on) all
received packets that are either in error or have the wrong value in the ack-
num field of an acknowledgment packet. Suppose that in such circumstances,
rdt3.0 were simply to retransmit the current data packet. Would the proto-
col still work? (Hint: Consider what would happen if there were only bit
errors; there are no packet losses but premature timeouts can occur. Consider
how many times the nth packet is sent, in the limit as n approaches infinity.)

P12. Consider the rdt 3.0 protocol. Draw a diagram showing that if the net-
work connection between the sender and receiver can reorder messages
(that is, that two messages propagating in the medium between the sender
and receiver can be reordered), then the alternating-bit protocol will not
work correctly (make sure you clearly identify the sense in which it will
not work correctly). Your diagram should have the sender on the left and
the receiver on the right, with the time axis running down the page, show-
ing data (D) and acknowledgment (A) message exchange. Make sure you
indicate the sequence number associated with any data or acknowledgment
segment.

P13. Consider a reliable data transfer protocol that uses only negative acknowledg-
ments. Suppose the sender sends data only infrequently. Would a NAK-only
protocol be preferable to a protocol that uses ACKs? Why? Now suppose the
sender has a lot of data to send and the end-to-end connection experiences
few losses. In this second case, would a NAK-only protocol be preferable to a
protocol that uses ACKs? Why?

P14. Consider the cross-country example shown in Figure 3.17. How big would
the window size have to be for the channel utilization to be greater than 95
percent? Suppose that the size of a packet is 1,500 bytes, including both
header fields and data.

P15. Suppose an application uses rdt 3.0 as its transport layer protocol. As the
stop-and-wait protocol has very low channel utilization (shown in the cross-
country example), the designers of this application let the receiver keep send-
ing back a number (more than two) of alternating ACK 0 and ACK 1 even if
the corresponding data have not arrived at the receiver. Would this applica-
tion design increase the channel utilization? Why? Are there any potential
problems with this approach? Explain.

P16. In the generic SR protocol that we studied in Section 3.4.4, the sender trans-
mits a message as soon as it is available (if it is in the window) without wait-
ing for an acknowledgment. Suppose now that we want an SR protocol that
sends messages two at a time. That is, the sender will send a pair of messages
and will send the next pair of messages only when it knows that both mes-
sages in the first pair have been received correctly.

PROBLEMS

301

302

CHAPTER 3

* TRANSPORT LAYER

P17.

P18.

P19.

Suppose that the channel may lose messages but will not corrupt or reorder
messages. Design an error-control protocol for the unidirectional reliable
transfer of messages. Give an FSM description of the sender and receiver.
Describe the format of the packets sent between sender and receiver, and vice
versa. If you use any procedure calls other than those in Section 3.4 (for
example, udt_send(), start timer(),rdt rcv(), and so on),
clearly state their actions. Give an example (a timeline trace of sender and
receiver) showing how your protocol recovers from a lost packet.

Consider a scenario in which Host A wants to simultaneously send packets to
Hosts B and C. A is connected to B and C via a broadcast channel—a packet
sent by A is carried by the channel to both B and C. Suppose that the broad-
cast channel connecting A, B, and C can independently lose and corrupt
packets (and so, for example, a packet sent from A might be correctly
received by B, but not by C). Design a stop-and-wait-like error-control proto-
col for reliably transferring packets from A to B and C, such that A will not
get new data from the upper layer until it knows that both B and C have cor-
rectly received the current packet. Give FSM descriptions of A and C. (Hint:
The FSM for B should be essentially the same as for C.) Also, give a descrip-
tion of the packet format(s) used.

Consider a scenario in which Host A and Host B want to send messages to
Host C. Hosts A and C are connected by a channel that can lose and cor-
rupt (but not reorder) messages. Hosts B and C are connected by another
channel (independent of the channel connecting A and C) with the same
properties. The transport layer at Host C should alternate in delivering
messages from A and B to the layer above (that is, it should first deliver
the data from a packet from A, then the data from a packet from B, and so
on). Design a stop-and-wait-like error-control protocol for reliably trans-
ferring packets from A and B to C, with alternating delivery at C as described
above. Give FSM descriptions of A and C. (Hint: The FSM for B should be
essentially the same as for A.) Also, give a description of the packet for-
mat(s) used.

Consider the GBN protocol with a sender window size of 3 and a
sequence number range of 1,024. Suppose that at time ¢, the next in-order
packet that the receiver is expecting has a sequence number of k. Assume
that the medium does not reorder messages. Answer the following
questions:

a. What are the possible sets of sequence numbers inside the sender’s win-
dow at time #? Justify your answer.

b. What are all possible values of the ACK field in all possible messages cur-
rently propagating back to the sender at time #? Justify your answer.

P20.

P21.

P22.

P23.

Suppose we have two network entities, A and B. B has a supply of data mes-
sages that will be sent to A according to the following conventions. When A
gets a request from the layer above to get the next data (D) message from B,
A must send a request (R) message to B on the A-to-B channel. Only when B
receives an R message can it send a data (D) message back to A on the B-to-
A channel. A should deliver exactly one copy of each D message to the layer
above. R messages can be lost (but not corrupted) in the A-to-B channel; D
messages, once sent, are always delivered correctly. The delay along both
channels is unknown and variable.

Design (give an FSM description of) a protocol that incorporates the appro-
priate mechanisms to compensate for the loss-prone A-to-B channel and
implements message passing to the layer above at entity A, as discussed
above. Use only those mechanisms that are absolutely necessary.

Consider the GBN and SR protocols. Suppose the sequence number space
is of size k. What is the largest allowable sender window that will avoid
the occurrence of problems such as that in Figure 3.27 for each of these
protocols?

Answer true or false to the following questions and briefly justify your
answer:

a. With the SR protocol, it is possible for the sender to receive an ACK for a
packet that falls outside of its current window.

b. With GBN, it is possible for the sender to receive an ACK for a packet that
falls outside of its current window.

c. The alternating-bit protocol is the same as the SR protocol with a sender
and receiver window size of 1.

d. The alternating-bit protocol is the same as the GBN protocol with a sender
and receiver window size of 1.

‘We have said that an application may choose UDP for a transport protocol
because UDP offers finer application control (than TCP) of what data is sent
in a segment and when.

a. Why does an application have more control of what data is sent in a segment?

b. Why does an application have more control on when the segment is sent?

P24. Consider transferring an enormous file of L bytes from Host A to Host B.

Assume an MSS of 536 bytes.

a. What is the maximum value of L such that TCP sequence numbers are not
exhausted? Recall that the TCP sequence number field has 4 bytes.

b. For the L you obtain in (a), find how long it takes to transmit the file.
Assume that a total of 66 bytes of transport, network, and data-link header

303

304

CHAPTER 3

* TRANSPORT LAYER

P25.

P26.

pP27.

are added to each segment before the resulting packet is sent out over a
155 Mbps link. Ignore flow control and congestion control so A can pump
out the segments back to back and continuously.

Host A and B are communicating over a TCP connection, and Host B has
already received from A all bytes up through byte 126. Suppose Host A then
sends two segments to Host B back-to-back. The first and second segments
contain 70 and 50 bytes of data, respectively. In the first segment, the
sequence number is 127, the source port number is 302, and the destination
port number is 80. Host B sends an acknowledgement whenever it receives a
segment from Host A.

a. In the second segment sent from Host A to B, what are the sequence num-
ber, source port number, and destination port number?

b. If the first segment arrives before the second segment, in the acknowl-
edgement of the first arriving segment, what is the acknowledgment num-
ber, the source port number, and the destination port number?

c. If the second segment arrives before the first segment, in the acknowl-
edgement of the first arriving segment, what is the acknowledgment
number?

d. Suppose the two segments sent by A arrive in order at B. The first acknowl-
edgement is lost and the second acknowledgement arrives after the first
timeout interval. Draw a timing diagram, showing these segments and all
other segments and acknowledgements sent. (Assume there is no additional
packet loss.) For each segment in your figure, provide the sequence number
and the number of bytes of data; for each acknowledgement that you add,
provide the acknowledgement number.

Host A and B are directly connected with a 100 Mbps link. There is one TCP
connection between the two hosts, and Host A is sending to Host B an enor-
mous file over this connection. Host A can send its application data into its
TCP socket at a rate as high as 120 Mbps but Host B can read out of its TCP
receive buffer at a maximum rate of 60 Mbps. Describe the effect of TCP
flow control.

SYN cookies were discussed in Section 3.5.6.

a. Why is it necessary for the server to use a special initial sequence number
in the SYNACK?

b. Suppose an attacker knows that a target host uses SYN cookies. Can the
attacker create half-open or fully open connections by simply sending an
ACK packet to the target? Why or why not?

c. Suppose an attacker collects a large amount of initial sequence numbers
sent by the server. Can the attacker cause the server to create many fully
open connections by sending ACKs with those initial sequence numbers?
Why?

P28.

P29.

P30.

P31.

P32.

P33.

P34.

PROBLEMS

Consider the network shown in Scenario 2 in Section 3.6.1. Suppose both
sending hosts A and B have some fixed timeout values.

a. Argue that increasing the size of the finite buffer of the router might possi-
bly decrease the throughput (A

).

our

b. Now suppose both hosts dynamically adjust their timeout values (like
what TCP does) based on the buffering delay at the router. Would increas-
ing the buffer size help to increase the throughput? Why?

Consider the TCP procedure for estimating RTT. Suppose that o« = 0.1. Let
SampleRTT, be the most recent sample RTT, let Sampl1eRTT, be the next
most recent sample RTT, and so on.

a. For a given TCP connection, suppose four acknowledgments have been
returned with corresponding sample RTTs SampleRTT,, SampleRTT,,
SampleRTT,, and SampleRTT,. Express EstimatedRTT in terms of
the four sample RTTs.

b. Generalize your formula for n sample RTTs.

c. For the formula in part (b) let n approach infinity. Comment on why this
averaging procedure is called an exponential moving average.

In Section 3.5.3, we discussed TCP’s estimation of RTT. Why do you think
TCP avoids measuring the SampleRTT for retransmitted segments?

What is the relationship between the variable SendBase in Section 3.5.4
and the variable LastByteRcvd in Section 3.5.5?

What is the relationship between the variable LastByteRcvd in Section
3.5.5 and the variable y in Section 3.5.4?

In Section 3.5.4, we saw that TCP waits until it has received three

duplicate ACKs before performing a fast retransmit. Why do you think the
TCP designers chose not to perform a fast retransmit after the first duplicate
ACK for a segment is received?

Compare GBN, SR, and TCP (no delayed ACK). Assume that the timeout
values for all three protocols are sufficiently long such that 5 consecutive data
segments and their corresponding ACKs can be received (if not lost in the
channel) by the receiving host (Host B) and the sending host (Host A) respec-
tively. Suppose Host A sends 5 data segments to Host B, and the 2" segment
(sent from A) is lost. In the end, all 5 data segments have been correctly
received by Host B.

a. How many segments has Host A sent in total and how many ACKs has
Host B sent in total? What are their sequence numbers? Answer this ques-
tion for all three protocols.

b. If the timeout values for all three protocol are much longer than 5 RTT,
then which protocol successfully delivers all five data segments in shortest
time interval?

305

306

CHAPTER 3

* TRANSPORT LAYER

P35.

P36.

P37.

In our description of TCP in Figure 3.53, the value of the threshold,
ssthresh, is set as ssthresh=cwnd/2 in several places and
ssthresh value is referred to as being set to half the window size when a
loss event occurred. Must the rate at which the sender is sending when the
loss event occurred be approximately equal to cwnd segments per RTT?
Explain your answer. If your answer is no, can you suggest a different
manner in which ssthresh should be set?

Consider Figure 3.46(b). If)\’m increases beyond R/2, can A increase
beyond R/3? Explain. Now consider Figure 3.46(c). If N’ increases beyond
R/2, can A, increase beyond R/4 under the assumption that a packet will be
forwarded twice on average from the router to the receiver? Explain.

Consider Figure 3.58.

Assuming TCP Reno is the protocol experiencing the behavior shown above,
answer the following questions. In all cases, you should provide a short
discussion justifying your answer.

a. Identify the intervals of time when TCP slow start is operating.
b. Identify the intervals of time when TCP congestion avoidance is operating.

c. After the 16th transmission round, is segment loss detected by a triple
duplicate ACK or by a timeout?

d. After the 22nd transmission round, is segment loss detected by a triple
duplicate ACK or by a timeout?

e. What is the initial value of ssthresh at the first transmission round?

45—
2 40
£
o 35—
3
o 30
N
3 25
]

2 204
2
c 15
2
T 10
[@)]
& 5
(V)
0 T T T T T T T T T 1

T
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Transmission round

Figure 3.58 ¢ TCP window size as a function of time

P38.

P39.

P40.

P41.

PROBLEMS

What is the value of ssthresh at the 18th transmission round?

What is the value of ssthresh at the 24th transmission round?

= g

During what transmission round is the 70th segment sent?

o

Assuming a packet loss is detected after the 26th round by the receipt of a
triple duplicate ACK, what will be the values of the congestion window
size and of ssthresh?

j- Suppose TCP Tahoe is used (instead of TCP Reno), and assume that triple
duplicate ACKs are received at the 16™ round. What are the ssthresh
and the congestion window size at the 19" round?

k. Again suppose TCP Tahoe is used, and there is a timeout event at 22"
round. How many packets have been sent out from 17" round till 22"
round, inclusive?

Refer to Figure 3.56, which illustrates the convergence of TCP’s AIMD
algorithm. Suppose that instead of a multiplicative decrease, TCP decreased
the window size by a constant amount. Would the resulting AIAD algorithm
converge to an equal share algorithm? Justify your answer using a diagram
similar to Figure 3.56.

In Section 3.5.4, we discussed the doubling of the timeout interval after a

timeout event. This mechanism is a form of congestion control. Why does
TCP need a window-based congestion-control mechanism (as studied in

Section 3.7) in addition to this doubling-timeout-interval mechanism?

Host A is sending an enormous file to Host B over a TCP connection.

Over this connection there is never any packet loss and the timers never
expire. Denote the transmission rate of the link connecting Host A to the
Internet by R bps. Suppose that the process in Host A is capable of sending
data into its TCP socket at a rate S bps, where S = 10 - R. Further suppose
that the TCP receive buffer is large enough to hold the entire file, and the
send buffer can hold only one percent of the file. What would prevent the
process in Host A from continuously passing data to its TCP socket at rate S
bps? TCP flow control? TCP congestion control? Or something else?
Elaborate.

Consider sending a large file from a host to another over a TCP connection
that has no loss.

a. Suppose TCP uses AIMD for its congestion control without slow start.
Assuming cwnd increases by 1 MSS every time a batch of ACKs is
received and assuming approximately constant round-trip times, how long
does it take for cwnd increase from 5 MSS to 11 MSS (assuming no loss
events)?

b. What is the average throughout (in terms of MSS and RTT) for this con-
nection up through time = 6 RTT?

307

308

CHAPTER 3

* TRANSPORT LAYER

P42.

P43.

P44.

P45.

P46.

Recall the macroscopic description of TCP throughput. In the period of time
from when the connection’s rate varies from W/(2 - RTT) to W/RTT, only one
packet is lost (at the very end of the period).

a. Show that the loss rate (fraction of packets lost) is equal to

L =loss rate =
Swridw
8 4
b. Use the result above to show that if a connection has loss rate L, then its

average rate is approximately given by

_1.22-MSS
RTTL

Consider that only a single TCP (Reno) connection uses one 10Mbps link
which does not buffer any data. Suppose that this link is the only congested
link between the sending and receiving hosts. Assume that the TCP sender
has a huge file to send to the receiver, and the receiver’s receive buffer is
much larger than the congestion window. We also make the following
assumptions: each TCP segment size is 1,500 bytes; the two-way propagation
delay of this connection is 100 msec; and this TCP connection is always in
congestion avoidance phase, that is, ignore slow start.

a. What is the maximum window size (in segments) that this TCP connection
can achieve?

b. What is the average window size (in segments) and average throughput (in
bps) of this TCP connection?

c. How long would it take for this TCP connection to reach its maximum
window again after recovering from a packet loss?

Consider the scenario described in the previous problem. Suppose that the
10Mbps link can buffer a finite number of segments. Argue that in order for
the link always busy sending data, we would like to choose a buffer size that
is at least the product of the link speed C and the two-way propagation delay
between the sender and the receiver.

Repeat Problem 43, but replacing the 10 Mbps link with a 10 Gbps link. Note
that in your answer to part ¢, you will realize that it takes a very long time for
the congestion window size to reach its maximum window size after recover-
ing from a packet loss. Sketch a solution to solve this problem.

Let T (measured by RTT) denote the time interval that a TCP connection
takes to increase its congestion window size from W/2 to W, where W is the

P47.

P48.

P49.

P50.

WIRESHARK LAB: EXPLORING TCP

maximum congestion window size. Argue that T is a function of TCP’s aver-
age throughput.

Consider a simplified TCP’s AIMD algorithm where the congestion window
size is measured in number of segments, not in bytes. In additive increase, the
congestion window size increases by one segment in each RTT. In multiplica-
tive decrease, the congestion window size decreases by half (if the result is
not an integer, round down to the nearest integer). Suppose that two TCP
connections, C, and C,, share a single congested link of speed 30 segments
per second. Assume that both C, and C, are in the congestion avoidance
phase. Connection C,’s RTT is 100 msec and connection C,’s RTT is

200 msec. Assume that when the data rate in the link exceeds the link’s
speed, all TCP connections experience data segment loss.

a. If both C, and C, at time t, have a congestion window of 10 segments,
what are their congestion window sizes after 2200 msec?

b. In the long run, will these two connections get the same share of the band-
width of the congested link? Explain.

Consider the network described in the previous problem. Now suppose that
the two TCP connections, C1 and C2, have the same RTT of 100 msec. Sup-
pose that at time t,, C1’s congestion window size is 15 segments but C2’s
congestion window size is 10 segments.

a. What are their congestion window sizes after 2200msec?

b. In the long run, will these two connections get about the same share of the
bandwidth of the congested link?

c. We say that two connections are synchronized, if both connections reach
their maximum window sizes at the same time and reach their minimum
window sizes at the same time. In the long run, will these two connections
get synchronized eventually? If so, what are their maximum window
sizes?

d. Will this synchronization help to improve the utilization of the shared
link? Why? Sketch some idea to break this synchronization.

Consider a modification to TCP’s congestion control algorithm. Instead of
additive increase, we can use multiplicative increase. A TCP sender increases
its window size by a small positive constant a (0 < a < I) whenever receives
a valid ACK. Find the functional relationship between loss rate L. and maxi-
mum congestion window W. Argue that for this modified TCP, regardless
TCP’s average throughput, a TCP connection always spends the same amount
of time to increase its congestion window size from W/2 to W.

In our discussion of TCP futures in Section 3.7, we noted that to achieve a
throughput of 10 Gbps, TCP could only tolerate a segment loss probability of

309

310

CHAPTER 3

* TRANSPORT LAYER

P51.

P52.

P53.

21019 (or equivalently, one loss event for every 5,000,000,000 segments).
Show the derivation for the values of 2 - 107! 1-out-0f-5,000,000 for the RTT
and MSS values given in Section 3.7. If TCP needed to support a 100 Gbps
connection, what would the tolerable loss be?

In our discussion of TCP congestion control in Section 3.7, we implicitly
assumed that the TCP sender always had data to send. Consider now the case
that the TCP sender sends a large amount of data and then goes idle (since it
has no more data to send) at 7,. TCP remains idle for a relatively long period
of time and then wants to send more data at 7,. What are the advantages and
disadvantages of having TCP use the cwnd and ssthresh values from ¢,
when starting to send data at 7,? What alternative would you recommend?
Why?

In this problem we investigate whether either UDP or TCP provides a degree
of end-point authentication.

a. Consider a server that receives a request within a UDP packet and
responds to that request within a UDP packet (for example, as done by a
DNS server). If a client with IP address X spoofs its address with address
Y, where will the server send its response?

b. Suppose a server receives a SYN with IP source address Y, and after
responding with a SYNACK, receives an ACK with IP source address Y
with the correct acknowledgement number. Assuming the server chooses a
random initial sequence number and there is no “man-in-the-middle,” can
the server be certain that the client is indeed at Y (and not at some other
address X that is spoofing Y)?

In this problem, we consider the delay introduced by the TCP slow-start
phase. Consider a client and a Web server directly connected by one link of
rate R. Suppose the client wants to retrieve an object whose size is exactly
equal to 15 S, where S is the maximum segment size (MSS). Denote the
round-trip time between client and server as RTT (assumed to be constant).
Ignoring protocol headers, determine the time to retrieve the object (including
TCP connection establishment) when

a. 4S/R>S/R + RTT > 25/R
b. S/R + RTT > 4 S/R
c. SR> RITT.

EE Discussion Questions

DI.

What is TCP connection hijacking? How can it be done?

D2. In Section 3.7, we remarked that a client-server application can “unfairly”

3.1« PRINCIPLES OF APPLICATION LAYER PROTOCOLS

create many parallel simultaneous connections. What can be done to make
the Internet truly fair?

D3. Read the research literature to learn what is meant by TCP friendly. Also read
the Sally Floyd interview at the end of this chapter. Write a one-page descrip-
tion of TCP friendliness.

D4. At the end of Section 3.7.1, we discussed the fact that an application can open
multiple TCP connections and obtain a higher throughput (or equivalently a
faster data transfer time). What would happen if all applications tried to
improve their performance by using multiple connections? What are some of
the difficulties involved in having a network element determine whether an
application is using multiple TCP connections?

D5. In addition to TCP and UDP port scanning, what functionality does nmap
have? Collect packet traces with Ethereal (or any other packet sniffer) of
nmap packet exchanges. Use the traces to explain how some of the advanced
features work.

D6. In our description of TCP in Figure 3.53, the initial value of cwnd is set to 1.
Consult the research literature and the Internet RFC and discuss alternative
approaches that have been proposed for setting the initial value of cwnd.

D7. Read the literature regarding SCTP [RFC 2960, RFC 3286]. What are the
applications that the SCTP’s designers envision it being used for? What
features of SCTP were added in order to meet the needs of these
applications?

m Programming Assignments

Implementing a Reliable Transport Protocol

In this laboratory programming assignment, you will be writing the sending and
receiving transport-level code for implementing a simple reliable data transfer pro-
tocol. There are two versions of this lab, the alternating-bit-protocol version and the
GBN version. This lab should be fun—your implementation will differ very little
from what would be required in a real-world situation.

Since you probably don’t have standalone machines (with an OS that you can
modify), your code will have to execute in a simulated hardware/software envi-
ronment. However, the programming interface provided to your routines—the
code that would call your entities from above and from below—is very close to
what is done in an actual UNIX environment. (Indeed, the software interfaces
described in this programming assignment are much more realistic that the infi-
nite loop senders and receivers that many texts describe.) Stopping and starting

311

312

CHAPTER 3

* TRANSPORT LAYER

timers are also simulated, and timer interrupts will cause your timer handling rou-
tine to be activated.

The full lab assignment, as well as code you will need to compile with your
own code, are available at this book’s Web site: http://www.awl.com/kurose-ross.

m Wireshark Lab: Exploring TCP

In this lab, you’ll use your Web browser to access a file from a Web server. As in ear-
lier Wireshark labs, you’ll use Wireshark to capture the packets arriving at your com-
puter. Unlike earlier labs, you’ll also be able to download a Wireshark-readable packet
trace from the Web server from which you downloaded the file. In this server trace,
you’ll find the packets that were generated by your own access of the Web server.
You’ll analyze the client- and server-side traces to explore aspects of TCP. In particu-
lar, you’ll evaluate the performance of the TCP connection between your computer
and the Web server. You’ll trace TCP’s window behavior, and infer packet loss,
retransmission, flow control and congestion control behavior, and estimated roundtrip
time.

As is the case with all Wireshark labs, the full description of this lab is avail-
able at this book’s Web site, http://www.awl.com/kurose-ross.

m Wireshark Lab: Exploring UDP

In this short lab, you’ll do a packet capture and analysis of your favorite application
that uses UDP (for example, DNS or a multimedia application such as Skype). As we
learned in Section 3.3, UDP is a simple, no-frills transport protocol. In this lab, you’ll
investigate the header fields in the UDP segment as well as the checksum calculation.

As is the case with all Wireshark labs, the full description of this lab is available at
this book’s Web site, http://www.awl.com/kurose-ross.

http://www.awl.com/kurose-ross
http://www.awl.com/kurose-ross
http://www.awl.com/kurose-ross

AN INTERVIEW WITH...

Sally Floyd

Sally Floyd is a research scientist at the ICSI Centfer for Infemet
Research, an insfitute dedicated to Internet and networking issues.
She is known in the industry for her work in Internet profocol design,
in particular reliable multicast, congestion control (TCP), packet

scheduling (RED), and protocol analysis. Sally received her BA in
Sociology at the University of California, Berkeley, and her MS and

PhD in computer science at the same university.

How did you decide to study computer science?

After getting my BA in sociology, I had to figure out how to support myself; I ended up get-
ting a two-year certificate in electronics from the local community college, and then spent
ten years working in electronics and computer science. This included eight years as a com-
puter systems engineer for the computers that run the Bay Area Rapid Transit trains. I later
decided to learn some more formal computer science and applied to graduate school in UC
Berkeley’s Computer Science Department.

Why did you decide to specialize in networking?

In graduate school I became interested in theoretical computer science. I first worked on the
probabilistic analysis of algorithms and later on computational learning theory. I was also
working at LBL (Lawrence Berkeley Laboratory) one day a month and my office was
across the hall from Van Jacobson, who was working on TCP congestion-control algorithms
at the time. Van asked me if I would like to work over the summer doing some analysis

of algorithms for a network-related problem involving the unwanted synchronization of
periodic routing messages. It sounded interesting to me, so I did this for the summer.

After I finished my thesis, Van offered me a full-time job continuing the work in net-
working. I hadn’t necessarily planned to stay in networking for years, but for me, network
research is more satisfying than theoretical computer science. I find I am happier in the
applied world, where the consequences of my work are more tangible.

What was your first job in the computer industry? What did it entail?

My first computer job was at BART (Bay Area Rapid Transit), from 1975 to 1982, working
on the computers that run the BART trains. I started off as a technician, maintaining and
repairing the various distributed computer systems involved in running the BART system.

These included a central computer system and distributed minicomputer system for
controlling train movement; a system of DEC computers for displaying ads and train desti-
nations on the destination signs; and a system of Modcomp computers for collecting
information from the fare gates. My last few years at BART were spent on a joint BART/LBL
project to design the replacement for BART’s aging train-control computer system.

What is the most challenging part of your job?

The actual research is the most challenging part. One research topic includes exploring fur-
ther issues about congestion control for applications such as streaming media. A second
topic is addressing network impediments to more explicit communication between routers
and end nodes. These impediments can include IP tunnels and MPLS paths, routers or mid-
dleboxes that drop packets containing IP options, complex layer-2 networks, and potentials
for network attacks. A third ongoing topic is to explore how our choice of models of scenar-
ios for use in analysis, simulation, and experiments affects our evaluation of the perform-
ance of congestion-control mechanisms. More information on these topics is on the DCCP,
Quick-Start, and TMRG Web pages, reachable from http://www.icir.org/floyd.

What do you see for the future of networking and the Internet?

One possibility is that the typical congestion encountered by Internet traffic will become
less severe as available bandwidth increases faster than demand. I view the trend as toward
less severe congestion, though a medium-term future of increasing congestion punctuated
by occasional congestion collapse does not seem impossible.

The future of the Internet itself, or of the Internet architecture, is not at all clear to me.
There are many factors contributing to rapid change, so that it is hard to predict how the
Internet or the Internet architecture will evolve, or even to predict how successfully this
evolution will be able to avoid the many potential pitfalls along the way.

One well-known negative trend is the increasing difficulty of making changes to the
Internet architecture. The Internet architecture is no longer a coherent whole, and the vari-
ous components such as transport protocols, router mechanisms, firewalls, load-balancers,
security mechanisms, and the like sometimes work at cross-purposes.

What people have inspired you professionally?

Richard Karp, my thesis advisor in graduate school, essentially showed me how to do
research, and Van Jacobson, my “group-leader” at LBL, was responsible for my interest in
networking and for much of my understanding of the Internet infrastructure. Dave Clark has
inspired me through his clear view of the Internet architecture and his role in the develop-
ment of that architecture through research, writing, and participation in the IETF and other
public forums. Deborah Estrin has inspired me through her focus and effectiveness, and her
ability to make conscious decisions of what she will work on and why.

One of the reasons I have enjoyed working in network research is that there are so
many people working in the field whom I like, respect, and am inspired by. They are smart,
hard-working, have a strong commitment to the development of the Internet, and can be
good companions for a beer and a friendly disagreement (or agreement) after a day of
meetings.

http://www.icir.org/floyd

The Network
Layer

We learned in the previous chapter that the transport layer provides various forms of
process-to-process communication by relying on the network layer’s host-to-host
communication service. We also learned that the transport layer does so without any
knowledge about how the network layer actually implements this service. So per-
haps you’re now wondering, what’s under the hood of the host-to-host communica-
tion service, what makes it tick?

In this chapter we’ll learn exactly how the network layer implements the host-
to-host communication service. We’ll see that unlike the transport layer, there is a
piece of the network layer in each and every host and router in the network. Because
of this, network-layer protocols are among the most challenging (and therefore
among the most interesting!) in the protocol stack.

The network layer is also one of the most complex layers in the protocol stack,
and so we’ll have a lot of ground to cover here. We’ll begin our study with an
overview of the network layer and the services it can provide. We’ll then revisit the
two broad approaches towards structuring network-layer packet delivery—the data-
gram and the virtual-circuit model—that we first encountered back in Chapter 1,
and see the fundamental role that addressing plays in delivering a packet to its desti-
nation host.

In this chapter, we’ll make an important distinction between the forwarding
and routing functions of the network layer. Forwarding involves the transfer of a

315

316

CHAPTER 4

* THE NETWORK LAYER

packet from an incoming link to an outgoing link within a single router. Routing
involves all of a network’s routers, whose collective interactions via routing proto-
cols determine the paths that packets take on their trips from source to destination
node. This will be an important distinction to keep in mind as you progress through
this chapter.

In order to deepen our understanding of packet forwarding, we’ll look “inside”
a router—at its hardware architecture and organization. We’ll then look at packet
forwarding in the Internet, along with the celebrated Internet Protocol (IP). We’ll
investigate network-layer addressing and the IPv4 datagram format. We’ll then
explore network address translation (NAT), datagram fragmentation, the Internet
Control Message Protocol (ICMP), and IPv6.

We’ll then turn our attention to the network layer’s routing function. We’ll see
that the job of a routing algorithm is to determine good paths (equivalently, routes)
from senders to receivers. We’ll first study the theory of routing algorithms, concen-
trating on the two most prevalent classes of algorithms: link-state and distance-
vector algorithms. Since the complexity of routing algorithms grows considerably
as the number of network routers increases, hierarchical routing approaches will
also be of interest. We’ll then see how theory is put into practice when we cover the
Internet’s intra-autonomous system routing protocols (RIP, OSPF, and IS-IS) and its
inter-autonomous system routing protocol, BGP. We’ll close this chapter with a dis-
cussion of broadcast and multicast routing.

In summary, this chapter has three major parts. The first part, Sections 4.1 and
4.2, covers network-layer functions and services. The second part, Sections 4.3 and
4.4, covers forwarding. Finally, the third part, Sections 4.5 through 4.7, covers
routing.

4.1 Introduction

Figure 4.1 shows a simple network with two hosts, Hl and H2, and several routers
on the path between H1 and H2. Suppose that H1 is sending information to H2, and
consider the role of the network layer in these hosts and in the intervening routers.
The network layer in H1 takes segments from the transport layer in H1, encapsu-
lates each segment into a datagram (that is, a network-layer packet), and then sends
the datagrams to its nearby router, R1. At the receiving host, H2, the network layer
receives the datagrams from its nearby router R2, extracts the transport-layer seg-
ments, and delivers the segments up to the transport layer at H2. The primary role of
the routers is to forward datagrams from input links to output links. Note that the
routers in Figure 4.1 are shown with a truncated protocol stack, that is, with no
upper layers above the network layer, because (except for control purposes) routers
do not run application- and transport-layer protocols such as those we examined in
Chapters 2 and 3.

End system H1

Application

Transport

Network

Data link

Physical

4.1« INTRODUCTION 317

National or
Global ISP

Mobile
Network

Network

Data link

Router R1 Physical

Network

Data link
Physical

Local or
Regional ISP

Home Network

Network

Data link

Physical

Network
Data link Router R2
Physical Network
Data link

Physical

Company Network

Figure 4.1 ¢ The network layer

End system H2

Application

Transport

Network

Data link

Physical

318

CHAPTER 4

* THE NETWORK LAYER

4.1.1 Forwarding and Routing

The role of the network layer is thus deceptively simple—to move packets from a
sending host to a receiving host. To do so, two important network-layer functions
can be identified:

* Forwarding. When a packet arrives at a router’s input link, the router must move
the packet to the appropriate output link. For example, a packet arriving from
Host H1 to Router R1 must be forwarded to the next router on a path to H2. In
Section 4.3, we’ll look inside a router and examine how a packet is actually for-
warded from an input link at a router to an output link.

* Routing. The network layer must determine the route or path taken by packets as
they flow from a sender to a receiver. The algorithms that calculate these paths
are referred to as routing algorithms. A routing algorithm would determine, for
example, the path along which packets flow from H1 to H2.

The terms forwarding and routing are often used interchangeably by authors
discussing the network layer. We’ll use these terms much more precisely in this
book. Forwarding refers to the router-local action of transferring a packet from an
input link interface to the appropriate output link interface. Routing refers to the net-
work-wide process that determines the end-to-end paths that packets take from
source to destination. Using a driving analogy, consider the trip from Pennsylvania
to Florida undertaken by our traveler back in Section 1.3.2. During this trip, our
driver passes through many interchanges en route to Florida. We can think of for-
warding as the process of getting through a single interchange: A car enters the inter-
change from one road and determines which road it should take to leave the
interchange. We can think of routing as the process of planning the trip from Penn-
sylvania to Florida: Before embarking on the trip, the driver has consulted a map
and chosen one of many paths possible, with each path consisting of a series of road
segments connected at interchanges.

Every router has a forwarding table. A router forwards a packet by examin-
ing the value of a field in the arriving packet’s header, and then using this value to
index into the router’s forwarding table. The result from the forwarding table indi-
cates to which of the router’s outgoing link interfaces the packet is to be for-
warded. Depending on the network-layer protocol, this value in the packet’s
header could be the destination address of the packet or an indication of the con-
nection to which the packet belongs. Figure 4.2 provides an example. In Figure 4.2,
a packet with a header field value of 0111 arrives to a router. The router indexes
into its forwarding table and determines that the output link interface for this
packet is interface 2. The router then internally forwards the packet to interface 2.
In Section 4.3 we’ll look inside a router and examine the forwarding function in
much greater detail.

4.1« INTRODUCTION

Routing algorithm

Local forwarding table

header value | output link

01003
0101

2
01112 —
1

1001

Value in arriving
packet’s header

Figure 4.2 ¢ Routing algorithms determine values in forwarding tables.

You might now be wondering how the forwarding tables in the routers are con-
figured. This is a crucial issue, one that exposes the important interplay between
routing and forwarding. As shown in Figure 4.2, the routing algorithm determines
the values that are inserted into the routers’ forwarding tables. The routing algorithm
may be centralized (e.g., with an algorithm executing on a central site and down-
loading routing information to each of the routers) or decentralized (i.e., with a
piece of the distributed routing algorithm running in each router). In either case, a
router receives routing protocol messages, which are used to configure its forward-
ing table. The distinct and different purposes of the forwarding and routing func-
tions can be further illustrated by considering the hypothetical (and unrealistic, but
technically feasible) case of a network in which all forwarding tables are configured
directly by human network operators physically present at the routers. In this case,
no routing protocols would be required! Of course, the human operators would need
to interact with each other to ensure that the forwarding tables were configured in
such a way that packets reached their intended destinations. It’s also likely that

319

320

CHAPTER 4

* THE NETWORK LAYER

human configuration would be more error-prone and much slower to respond to
changes in the network topology than a routing protocol. We’re thus fortunate that
all networks have both a forwarding and a routing function!

While we’re on the topic of terminology, it’s worth mentioning two other terms
that are often used interchangeably, but that we will use more carefully. We’ll reserve
the term packet switch to mean a general packet-switching device that transfers a
packet from input link interface to output link interface, according to the value in a field
in the header of the packet. Some packet switches, called link-layer switches (exam-
ined in Chapter 5), base their forwarding decision on the value in the link-layer field.
Other packet switches, called routers, base their forwarding decision on the value in
the network-layer field. (To fully appreciate this important distinction, you might want
to review Section 1.5.2, where we discuss network-layer datagrams and link-layer
frames and their relationship.) Since our focus in this chapter is on the network layer,
we use the term router in place of packet switch. We’ll even use the term router when
talking about packet switches in virtual-circuit networks (soon to be discussed).

Connection Setup

We just said that the network layer has two important functions, forwarding and rout-
ing. But we’ll soon see that in some computer networks there is actually a third impor-
tant network-layer function, namely, connection setup. Recall from our study of TCP
that a three-way handshake is required before data can flow from sender to receiver.
This allows the sender and receiver to set up the needed state information (for example,
sequence number and initial flow-control window size). In an analogous manner, some
network-layer architectures—for example, ATM and frame-relay, but not the Internet—
require the routers along the chosen path from source to destination to handshake with
each other in order to set up state before network-layer data packets within a given
source-to-destination connection can begin to flow. In the network layer, this process is
referred to as connection setup. We’ll examine connection setup in Section 4.2.

4.1.2 Network Service Models

Before delving into the network layer, let’s take the broader view and consider the
different types of service that might be offered by the network layer. When the trans-
port layer at a sending host transmits a packet into the network (that is, passes it
down to the network layer at the sending host), can the transport layer count on the
network layer to deliver the packet to the destination? When multiple packets are
sent, will they be delivered to the transport layer in the receiving host in the order in
which they were sent? Will the amount of time between the sending of two sequen-
tial packet transmissions be the same as the amount of time between their reception?
Will the network provide any feedback about congestion in the network? What is
the abstract view (properties) of the channel connecting the transport layer in the send-
ing and receiving hosts? The answers to these questions and others are determined

4.1« INTRODUCTION

by the service model provided by the network layer. The network service model
defines the characteristics of end-to-end transport of packets between sending and
receiving end systems.

Let’s now consider some possible services that the network layer could provide.
In the sending host, when the transport layer passes a packet to the network layer,
specific services that could be provided by the network layer include:

* Guaranteed delivery. This service guarantees that the packet will eventually
arrive at its destination.

* Guaranteed delivery with bounded delay. This service not only guarantees deliv-
ery of the packet, but delivery within a specified host-to-host delay bound (for
example, within 100 msec).

Furthermore, the following services could be provided to a flow of packets between
a given source and destination:

* In-order packet delivery. This service guarantees that packets arrive at the desti-
nation in the order that they were sent.

* Guaranteed minimal bandwidth. This network-layer service emulates the behavior
of a transmission link of a specified bit rate (for example, 1 Mbps) between send-
ing and receiving hosts (even though the actual end-to-end path may traverse sev-
eral physical links). As long as the sending host transmits bits (as part of packets)
at a rate below the specified bit rate, then no packet is lost and each packet arrives
within a prespecified host-to-host delay (for example, within 40 msec).

* Guaranteed maximum jitter. This service guarantees that the amount of time
between the transmission of two successive packets at the sender is equal to the
amount of time between their receipt at the destination (or that this spacing
changes by no more than some specified value).

* Security services. Using a secret session key known only by a source and desti-
nation host, the network layer in the source host could encrypt the payloads of
all datagrams being sent to the destination host. The network layer in the
destination host would then be responsible for decrypting the payloads. With
such a service, confidentiality would be provided to all transport-layer segments
(TCP and UDP) between the source and destination hosts. In addition to confi-
dentiality, the network layer could provide data integrity and source authentica-
tion services.

This is only a partial list of services that a network layer could provide—there are
countless variations possible.

The Internet’s network layer provides a single service, known as best-effort
service. From Table 4.1, it might appear that best-effort service is a eaphemism for
no service at all. With best-effort service, timing between packets is not guaranteed

321

322 CHAPTER 4

* THE NETWORK LAYER

Network Service Bandwidth No-Loss Congestion

Architecture Model Guarantee Guarantee Ordering Timing Indication

Internet Best Effort None None Any order Not None

possible maintained

ATM (BR Guaranteed Yes In order Maintained (ongestion
constant rafe will not occur

ATM ABR Guaranteed None In order Not Congestion
minimum maintained indication

provided
Table 4.1 ¢ Internet, ATM CBR, and ATM ABR service models

to be preserved, packets are not guaranteed to be received in the order in which they
were sent, nor is the eventual delivery of transmitted packets guaranteed. Given this
definition, a network that delivered no packets to the destination would satisfy the
definition of best-effort delivery service. As we’ll discuss shortly, however, there
are sound reasons for such a minimalist network-layer service model. We’ll cover
additional, still-evolving, Internet service models in Chapter 7.

Other network architectures have defined and implemented service models that
go beyond the Internet’s best-effort service. For example, the ATM network archi-
tecture [MFA Forum 2009, Black 1995] provides for multiple service models, mean-
ing that different connections can be provided with different classes of service
within the same network. A discussion of how an ATM network provides such serv-
ices is well beyond the scope of this book; our aim here is only to note that alterna-
tives do exist to the Internet’s best-effort model. Two of the more important ATM
service models are constant bit rate and available bit rate service:

e Constant bit rate (CBR) ATM network service. This was the first ATM service
model to be standardized, reflecting early interest by the telephone companies in
ATM and the suitability of CBR service for carrying real-time, constant bit rate
audio and video traffic. The goal of CBR service is conceptually simple—to pro-
vide a flow of packets (known as cells in ATM terminology) with a virtual pipe
whose properties are the same as if a dedicated fixed-bandwidth transmission
link existed between sending and receiving hosts. With CBR service, a flow of
ATM cells is carried across the network in such a way that a cell’s end-to-end
delay, the variability in a cell’s end-end delay (that is, the jitter), and the fraction
of cells that are lost or delivered late are all guaranteed to be less than specified
values. These values are agreed upon by the sending host and the ATM network
when the CBR connection is first established.

4.2« VIRTUAL CIRCUIT AND DATAGRAM NETWORKS

* Available bit rate (ABR) ATM network service. With the Internet offering so-
called best-effort service, ATM’s ABR might best be characterized as being a
slightly-better-than-best-effort service. As with the Internet service model, cells
may be lost under ABR service. Unlike in the Internet, however, cells cannot be
reordered (although they may be lost), and a minimum cell transmission rate
(MCR) is guaranteed to a connection using ABR service. If the network has
enough free resources at a given time, a sender may also be able to send cells
successfully at a higher rate than the MCR. Additionally, as we saw in Section
3.6, ATM ABR service can provide feedback to the sender (in terms of a con-
gestion notification bit, or an explicit rate at which to send) that controls how
the sender adjusts its rate between the MCR and an allowable peak cell rate.

4.2 Virtual Circuit and Datagram Networks

Recall from Chapter 3 that a transport layer can offer applications connectionless
service or connection-oriented service. For example, the Internet’s transport layer pro-
vides each application a choice between two services: UDP, a connectionless service;
or TCP, a connection-oriented service. In a similar manner, a network layer can also
provide connectionless service or connection service. Network-layer connection and
connectionless services in many ways parallel transport-layer connection-oriented
and connectionless services. For example, a network-layer connection service begins
with handshaking between the source and destination hosts; and a network-layer con-
nectionless service does not have any handshaking preliminaries.

Although the network-layer connection and connectionless services have some
parallels with transport-layer connection-oriented and connectionless services, there
are crucial differences:

* In the network layer these services are host-to-host services provided by the net-
work layer to the transport layer. In the transport layer these services are process-
to-process services provided by the transport layer to the application layer.

* In all major computer network architectures to date (Internet, ATM, frame relay,
and so on), the network layer provides either a host-to-host connectionless serv-
ice or a host-to-host connection service, but not both. Computer networks that
provide only a connection service at the network layer are called virtual-circuit
(VC) networks; computer networks that provide only a connectionless service
at the network layer are called datagram networks.

* The implementations of connection-oriented service in the transport layer and
the connection service in the network layer are fundamentally different. We saw
in the previous chapter that the transport-layer connection-oriented service is
implemented at the edge of the network in the end systems; we’ll see shortly that

323

324

CHAPTER 4

* THE NETWORK LAYER

the network-layer connection service is implemented in the routers in the net-
work core as well as in the end systems.

Virtual-circuit and datagram networks are two fundamental classes of computer net-
works. They use very different information in making their forwarding decisions.
Let’s now take a closer look at their implementations.

4.2.1 Virtual-Circuit Networks

We’ve learned that the Internet is a datagram network. However, many alternative
network architectures—including those of ATM and frame relay—are virtual-circuit
networks and, therefore, use connections at the network layer. These network-layer
connections are called virtual circuits (VCs). Let’s now consider how a VC service
can be implemented in a computer network.

A VC consists of (1) a path (that is, a series of links and routers) between the
source and destination hosts, (2) VC numbers, one number for each link along the
path, and (3) entries in the forwarding table in each router along the path. A packet
belonging to a virtual circuit will carry a VC number in its header. Because a virtual
circuit may have a different VC number on each link, each intervening router must
replace the VC number of each traversing packet with a new VC number. The new
VC number is obtained from the forwarding table.

To illustrate the concept, consider the network shown in Figure 4.3. The numbers
next to the links of R1 in Figure 4.3 are the link interface numbers. Suppose now that
Host A requests that the network establish a VC between itself and Host B. Suppose
also that the network chooses the path A-R1-R2-B and assigns VC numbers 12, 22,
and 32 to the three links in this path for this virtual circuit. In this case, when a packet
in this VC leaves Host A, the value in the VC number field in the packet header is 12;
when it leaves R1, the value is 22; and when it leaves R2, the value is 32.

How does the router determine the replacement VC number for a packet tra-
versing the router? For a VC network, each router’s forwarding table includes VC

A R1 R2 B

1 CVSZ 1 (;st
%3—4} -
R3 R4 o

Figure 4.3 ¢ A simple virtual circuit network

4.2« VIRTUAL CIRCUIT AND DATAGRAM NETWORKS

number translation; for example, the forwarding table in R1 might look something
like this:

Incoming Interface Incoming VC # Qutgoing Inferface Outgoing VC #
1 12 2 22
2 63] 18
3 7 2 17
1 97 3 87

Whenever a new VC is established across a router, an entry is added to the forward-
ing table. Similarly, whenever a VC terminates, the appropriate entries in each table
along its path are removed.

You might be wondering why a packet doesn’t just keep the same VC number
on each of the links along its route. The answer is twofold. First, replacing the num-
ber from link to link reduces the length of the VC field in the packet header. Second,
and more importantly, VC setup is considerably simplified by permitting a different
VC number at each link along the path of the VC. Specifically, with multiple VC
numbers, each link in the path can choose a VC number independently of the VC
numbers chosen at other links along the path. If a common VC number were required
for all links along the path, the routers would have to exchange and process a sub-
stantial number of messages to agree on a common VC number (e.g., one that is not
being used by any other existing VC at these routers) to be used for a connection.

In a VC network, the network’s routers must maintain connection state infor-
mation for the ongoing connections. Specifically, each time a new connection is
established across a router, a new connection entry must be added to the router’s for-
warding table; and each time a connection is released, an entry must be removed
from the table. Note that even if there is no VC-number translation, it is still neces-
sary to maintain connection state information that associates VC numbers with out-
put interface numbers. The issue of whether or not a router maintains connection
state information for each ongoing connection is a crucial one—one that we’ll return
to repeatedly in this book.

There are three identifiable phases in a virtual circuit:

* VC setup. During the setup phase, the sending transport layer contacts the net-
work layer, specifies the receiver’s address, and waits for the network to set up
the VC. The network layer determines the path between sender and receiver, that
is, the series of links and routers through which all packets of the VC will travel.
The network layer also determines the VC number for each link along the path.
Finally, the network layer adds an entry in the forwarding table in each router

325

326

CHAPTER 4

* THE NETWORK LAYER

along the path. During VC setup, the network layer may also reserve resources
(for example, bandwidth) along the path of the VC.

* Data transfer. As shown in Figure 4.4, once the VC has been established, pack-
ets can begin to flow along the VC.

e VC teardown. This is initiated when the sender (or receiver) informs the network
layer of its desire to terminate the VC. The network layer will then typically
inform the end system on the other side of the network of the call termination
and update the forwarding tables in each of the packet routers on the path to indi-
cate that the VC no longer exists.

There is a subtle but important distinction between VC setup at the network
layer and connection setup at the transport layer (for example, the TCP three-way
handshake we studied in Chapter 3). Connection setup at the transport layer
involves only the two end systems. During transport-layer connection setup, the two
end systems alone determine the parameters (for example, initial sequence number
and flow-control window size) of their transport-layer connection. Although the two
end systems are aware of the transport-layer connection, the routers within the net-
work are completely oblivious to it. On the other hand, with a VC network layer,
routers along the path between the two end systems are involved in VC setup, and
each router is fully aware of all the VCs passing through it.

The messages that the end systems send into the network to initiate or terminate a
VC, and the messages passed between the routers to set up the VC (that is, to modify
connection state in router tables) are known as signaling messages, and the protocols

Application Application

4. Call connected 3. Accept call

Transport / \ Transport
.D fl . Recei
@ Network o /5 b:;?nsow 6 d:;:lve\ Network @

Data link Data link =
Physical Physical
1. Initiate call . Incoming call

Figure 4.4 ¢ Virtualcircuit setup

4.2« VIRTUAL CIRCUIT AND DATAGRAM NETWORKS

used to exchange these messages are often referred to as signaling protocols. VC setup
is shown pictorially in Figure 4.4. We’ll not cover VC signaling protocols in this book;
see [Black 1997] for a general discussion of signaling in connection-oriented networks
and [ITU-T Q.2931 1994] for the specification of ATM’s Q.2931 signaling protocol.

4.2.2 Datagram Networks

In a datagram network, each time an end system wants to send a packet, it stamps
the packet with the address of the destination end system and then pops the packet
into the network. As shown in Figure 4.5, this is done without any VC setup.
Routers in a datagram network do not maintain any state information about VCs
(because there are no VCs!).

As a packet is transmitted from source to destination, it passes through a series
of routers. Each of these routers uses the packet’s destination address to forward the
packet. Specifically, each router has a forwarding table that maps destination
addresses to link interfaces; when a packet arrives at the router, the router uses the
packet’s destination address to look up the appropriate output link interface in the
forwarding table. The router then intentionally forwards the packet to that output
link interface.

To get some further insight into the lookup operation, let’s look at a specific
example. Suppose that all destination addresses are 32 bits (which just happens to
be the length of the destination address in an IP datagram). A brute-force implemen-
tation of the forwarding table would have one entry for every possible destination
address. Since there are more than 4 billion possible addresses, this option is totally
out of the question—it would require a humongous forwarding table.

Figure 4.5 ¢ Datagram network

N

Application Application
Transport Transport
Network Network

- 1. Send 2. Receive -
Data link data data Data link
Physical Physical

327

328

CHAPTER 4

* THE NETWORK LAYER

Now let’s further suppose that our router has four links, numbered O through 3,
and that packets are to be forwarded to the link interfaces as follows:

Destination Address Range Link Interface

11001000 00010111 00010000 00000000
through 0
11001000 00010111 00010111 11111111

11001000 00010111 00011000 00000000
through 1
11001000 00010111 00011000 11111111

11001000 00010111 00011001 00000000
through 2
11001000 00010111 00011111 11111111

otherwise 3

Clearly, for this example, it is not necessary to have 4 billion entries in the router’s
forwarding table. We could, for example, have the following forwarding table with
just four entries:

Prefix Match Link Interface

11001000 00010111 00010

11001000 00010111 00011000

11001000 00010111 00011
otherwise

[OSIN S I)

With this style of forwarding table, the router matches a prefix of the packet’s desti-
nation address with the entries in the table; if there’s a match, the router forwards
the packet to a link associated with the match. For example, suppose the packet’s
destination address is 11001000 00010111 00010110 10100001; because the 21-bit
prefix of this address matches the first entry in the table, the router forwards the
packet to link interface O. If a prefix doesn’t match any of the first three entries, then
the router forwards the packet to interface 3. Although this sounds simple enough,
there’s an important subtlety here. You may have noticed that it is possible for a des-
tination address to match more than one entry. For example, the first 24 bits of the
address 11001000 00010111 00011000 10101010 match the second entry in the
table, and the first 21 bits of the address match the third entry in the table. When
there are multiple matches, the router uses the longest prefix matching rule; that

4.2« VIRTUAL CIRCUIT AND DATAGRAM NETWORKS

is, it finds the longest matching entry in the table and forwards the packet to the link
interface associated with the longest prefix match. We’ll see exactly why this
longest prefix-matching rule is used when we study Internet addressing in more
detail in Section 4.4.

Although routers in datagram networks maintain no connection state information,
they nevertheless maintain forwarding state information in their forwarding tables.
However, the time scale at which this forwarding state information changes is relatively
slow. Indeed, in a datagram network the forwarding tables are modified by the routing
algorithms, which typically update a forwarding table every one-to-five minutes or so.
In a VC network, a forwarding table in a router is modified whenever a new connection
is set up through the router or whenever an existing connection through the router is
torn down. This could easily happen at a microsecond timescale in a backbone, tier-1
router.

Because forwarding tables in datagram networks can be modified at any time, a
series of packets sent from one end system to another may follow different paths
through the network and may arrive out of order. [Paxson 1997] and [Jaiswal 2003]
present interesting measurement studies of packet reordering and other phenomena
in the public Internet.

4.2.3 Origins of VC and Datagram Networks

The evolution of datagram and VC networks reflects their origins. The notion of a
virtual circuit as a central organizing principle has its roots in the telephony world,
which uses real circuits. With call setup and per-call state being maintained at the
routers within the network, a VC network is arguably more complex than a data-
gram network (although see [Molinero-Fernandez 2002] for an interesting compari-
son of the complexity of circuit- versus packet-switched networks). This, too, is in
keeping with its telephony heritage. Telephone networks, by necessity, had their
complexity within the network, since they were connecting dumb end-system
devices such as rotary telephones. (For those too young to know, a rotary phone is
an analog telephone with no buttons—only a dial.)

The Internet as a datagram network, on the other hand, grew out of the need to
connect computers together. Given more sophisticated end-system devices, the
Internet architects chose to make the network-layer service model as simple as pos-
sible. As we have already seen in Chapters 2 and 3, additional functionality (for
example, in-order delivery, reliable data transfer, congestion control, and DNS name
resolution) is then implemented at a higher layer, in the end systems. This inverts
the model of the telephone network, with some interesting consequences:

* Since the resulting Internet network-layer service model makes minimal (no!)
service guarantees, it imposes minimal requirements on the network layer. This
makes it easier to interconnect networks that use very different link-layer tech-
nologies (for example, satellite, Ethernet, fiber, or radio) and have very different

329

330

CHAPTER 4

* THE NETWORK LAYER

transmission rates and loss characteristics. We will address the interconnection
of IP networks in detail in Section 4.4.

* As we saw in Chapter 2, applications such as e-mail, the Web, and even a net-
work layer—centric service such as the DNS are implemented in hosts (servers)
at the edge of the network. The ability to add a new service simply by attaching a
host to the network and defining a new application-layer protocol (such as
HTTP) has allowed new applications such as the Web to be deployed in the Inter-
net in a remarkably short period of time.

As we’ll see in Chapter 7, there is considerable debate in the Internet commu-
nity about how the Internet’s network-layer architecture should evolve in order to
support real-time services such as multimedia. An interesting comparison of the VC-
oriented ATM network architecture and a proposed next-generation Internet archi-
tecture is given in [Crowcroft 1995].

4.3 What'’s Inside a Router?

Now that we’ve seen an overview of the functions and services of the network
layer, let’s turn our attention to the network layer’s forwarding function—the
actual transfer of packets from a router’s incoming links to the appropriate outgo-
ing links. We already took a brief look at a few forwarding issues in Section 4.2,
namely, addressing and longest prefix matching. In this section we’ll look at spe-
cific router architectures for transferring packets from incoming links to outgoing
links. Our coverage here is necessarily brief, as an entire course would be needed
to cover router design in depth. Consequently, we’ll make a special effort in this
section to provide pointers to material that covers this topic in more depth. We
mention here in passing that the words forwarding and switching are often used
interchangeably by computer-networking researchers and practitioners; we’ll use
both terms in this textbook.

A high-level view of a generic router architecture is shown in Figure 4.6. Four
components of a router can be identified:

* Input ports. The input port performs several functions. It performs the physical-
layer functions (the leftmost box of the input port and the rightmost box of the out-
put port in Figure 4.6) of terminating an incoming physical link to a router. It
performs the data link—layer functions (represented by the middle boxes in the
input and output ports) needed to interoperate with the data link—layer functions at
the remote side of the incoming link. It also performs a lookup and forwarding
function (the rightmost box of the input port and the leftmost box of the output

4.3 « WHAT'S INSIDE A ROUTER? 331

Input port Output port
‘ -»I:I =»| > =p = > ->|:| —»‘
Switch
Input port fabric Output port
. —»I:I > > ==p| = > ->|:| —»‘
4
v
Routing
processor

Figure 4.6 ¢ Router architecture

port) so that a packet forwarded into the switching fabric of the router emerges at
the appropriate output port. Control packets (for example, packets carrying routing
protocol information) are forwarded from an input port to the routing processor. In
practice, multiple ports are often gathered together on a single line card within a
router.

* Switching fabric. The switching fabric connects the router’s input ports to its out-
put ports. This switching fabric is completely contained within the router—a net-
work inside of a network router!

* QOutput ports. An output port stores the packets that have been forwarded to it
through the switching fabric and then transmits the packets on the outgoing link.
The output port thus performs the reverse data link—and physical-layer function-
ality of the input port. When a link is bidirectional (that is, carries traffic in both
directions), an output port to the link will typically be paired with the input port
for that link, on the same line card.

* Routing processor. The routing processor executes the routing protocols (for
example, the protocols we study in Section 4.6), maintains the routing informa-
tion and forwarding tables, and performs network management functions (see
Chapter 9) within the router.

In the following subsections, we’ll look at input ports, the switching fabric, and
output ports in more detail. [Chuang 2005; Keslassy 2003; Chao 2001; Turner 1988;
Giacopelli 1990; McKeown 1997a; Partridge 1998] provide a discussion of some

332

CHAPTER 4

* THE NETWORK LAYER

specific router architectures. [McKeown 1997b] provides a particularly readable
overview of modern router architectures, using the Cisco 12000 router as an exam-
ple. For concreteness, the ensuing discussion assumes that the computer network is
a packet network, and that forwarding decisions are based on the packet’s destina-
tion address (rather than a VC number in a virtual-circuit network). However, the
concepts and techniques are similar for a virtual-circuit network.

4.3.1 Input Ports

A more detailed view of input port functionality is given in Figure 4.7. As discussed
above, the input port’s line termination function and data link processing implement
the physical and data link layers associated with an individual input link to the
router. The lookup/forwarding module in the input port is central to the forwarding
function of the router. In many routers, it is here that the router determines the out-
put port to which an arriving packet will be forwarded via the switching fabric. The
choice of the output port is made using the information contained in the forwarding
table. Although the forwarding table is computed by the routing processor, a shadow
copy of the forwarding table is typically stored at each input port and updated, as
needed, by the routing processor. With local copies of the forwarding table, the for-
warding decision can be made locally, at each input port, without invoking the cen-
tralized routing processor. Such decentralized forwarding avoids creating a
forwarding processing bottleneck at a single point within the router.

In routers with limited processing capabilities at the input port, the input port
may simply forward the packet to the centralized routing processor, which will then
perform the forwarding table lookup and forward the packet to the appropriate out-
put port. This is the approach taken when a workstation or a server serves as a
router; here, the routing processor is really just the workstation’s CPU, and the input
port is really just a network interface card (for example, an Ethernet card).

Given the existence of a forwarding table, table lookup is conceptually sim-
ple—we just search through the forwarding table looking for the longest prefix
match, as described in Section 4.2.2. In practice, however, life is not so simple.

Data link Lookup, fowarding,
= L_|ne_ — processing _— queuing N SW|tc_h
termination (protocol, m fabric
decapsulation)

Figure 4.7 ¢ Input port processing

4.3 « WHAT'S INSIDE A ROUTER?

CASE HISTORY

CISCO SYSTEMS: DOMINATING THE NETWORK CORE

As of this writing (October 2008), Cisco employs more than 65,000 people. Cisco
currently dominates the Internet router market and in recent years has moved into the
Internet telephony market, where it competes head-to-head with the telephone equip-
ment companies, such as Lucent, Alcatel, Nortel, and Siemens. How did this gorilla
of a networking company come to be? It all started in 1984 in the living room of a
Silicon Valley apartment.

Len Bosak and his wife Sandy Lerner were working at Stanford University when
they had the idea to build and sell Internet routers to research and academic institu-
tions. Sandy Lerner came up with the name Cisco (an abbreviation for San Francisco),
and she also designed the company’s bridge logo. Corporate headquarters was their
living room, and they financed the project with credit cards and moonlighting consult-
ing jobs. At the end of 1986, Cisco’s revenues reached $250,000 a month. At the
end of 1987, Cisco succeeded in attracting venture capital—$2 million from Sequoia
Capital in exchange for one third of the company. Over the next few years, Cisco con-
tinved to grow and grab more and more market share. At the same time, relations
between Bosak/Lerner and Cisco management became strained. Cisco went public in
1990; in the same year Lerner and Bosak left the company.

Over the years, Cisco has expanded well beyond the router market, selling security,
wireless, and voice-over IP products and services. However, Cisco is facing increased
international competition, including from Huawei, a rapidly growing Chinese network-
gear company. Other sources of competition for Cisco in the router and switched
Ethernet space include Alcatel-Lucent, and Juniper.

Perhaps the most important complicating factor is that backbone routers must oper-
ate at high speeds, performing millions of lookups per second. Indeed, it is desirable
for the input port processing to be able to proceed at line speed, that is, for a lookup
to be performed in less than the amount of time needed to receive a packet at the
input port. In this case, input processing of a received packet can be completed
before the next receive operation is complete. To get an idea of the performance
requirements for a lookup, consider that an OC-48 link runs at 2.5 Gbps. With pack-
ets 256 bytes long, this implies a lookup speed of approximately 1 million lookups
per second.

Given the need to operate at today’s high link speeds, a linear search through a
large forwarding table is impossible. A more reasonable technique is to store the for-
warding table entries in a tree data structure. Each level in the tree can be thought of
as corresponding to a bit in the destination address. To look up an address, one sim-
ply starts at the root node of the tree. If the first address bit is a zero, then the left

333

334

CHAPTER 4

* THE NETWORK LAYER

subtree will contain the forwarding table entry for the destination address; otherwise
it will be in the right subtree. The appropriate subtree is then traversed using the
remaining address bits—if the next address bit is a zero, the left subtree of the initial
subtree is chosen; otherwise, the right subtree of the initial subtree is chosen. In this
manner, one can look up the forwarding table entry in N steps, where N is the num-
ber of bits in the address. (Note that this is essentially a binary search through an
address space of size 2V.) An improvement over binary search techniques is
described in [Srinivasan 1999], and a general survey of packet classification algo-
rithms can be found in [Gupta 2001].

But even with N = 32 (for example, a 32-bit IP address) steps, the lookup
speed via binary search is not fast enough for today’s backbone routing require-
ments. For example, assuming a memory access at each step, fewer than a million
address lookups per second could be performed with 40 ns memory access times.
Several techniques have thus been explored to increase lookup speeds. Content
addressable memories (CAMs) allow a 32-bit IP address to be presented to the
CAM, which returns the content of the forwarding table entry for that address in
essentially constant time. The Cisco 8500 series router has a 64K CAM for each
input port.

Another technique for speeding up lookup is to keep recently accessed forward-
ing table entries in a cache [Feldmeier 1988]. Here, the concern is the potential size
of the cache. Fast data structures, which allow forwarding table entries to be located
in log(N) steps [Waldvogel 1997], or which compress forwarding tables in novel
ways [Brodnik 1997], have been proposed. A hardware-based approach to lookup
that is optimized for the common case that the address being looked up has 24 or
fewer significant bits is discussed in [Gupta 1998]. For a survey and taxonomy of
high-speed IP address lookup algorithms, see [Ruiz-Sanchez 2001].

Once the output port for a packet has been determined via the lookup, the
packet can be forwarded into the switching fabric. However, a packet may be tem-
porarily blocked from entering the switching fabric (due to the fact that packets
from other input ports are currently using the fabric). A blocked packet must thus be
queued at the input port and then scheduled to cross the switching fabric at a later
point in time. We’ll take a closer look at the blocking, queuing, and scheduling of
packets (at both input ports and output ports) within a router in Section 4.3.4.

4.3.2 Switching Fabric

The switching fabric is at the very heart of a router. It is through the switching fab-
ric that the packets are actually switched (that is, forwarded) from an input port to
an output port. Switching can be accomplished in a number of ways, as indicated in
Figure 4.8:

o Switching via memory. The simplest, earliest routers were often traditional com-
puters, with switching between input and output ports being done under direct

4.3 « WHAT'S INSIDE A ROUTER? 335

Memory Crossbar
A

=[] [O — ===
B LI o — [J[um]—
Z C

B

— [] [mu]—{ Memory
C

— [] [mn]—

X
Bus

z
— O Ju]>g>fmf [00—

Key:
O] Input port [1 Output port

Figure 4.8 ¢ Three switching techniques

control of the CPU (routing processor). Input and output ports functioned as tra-
ditional I/O devices in a traditional operating system. An input port with an arriv-
ing packet first signaled the routing processor via an interrupt. The packet was
then copied from the input port into processor memory. The routing processor
then extracted the destination address from the header, looked up the appropriate
output port in the forwarding table, and copied the packet to the output port’s
buffers. Note that if the memory bandwidth is such that B packets per second can
be written into, or read from, memory, then the overall forwarding throughput
(the total rate at which packets are transferred from input ports to output ports)
must be less than B/2.

Many modern routers also switch via memory. A major difference from early
routers, however, is that the lookup of the destination address and the storing of
the packet into the appropriate memory location is performed by processors on
the input line cards. In some ways, routers that switch via memory look very
much like shared-memory multiprocessors, with the processors on a line card
switching packets into the memory of the appropriate output port. Cisco’s

336

CHAPTER 4

THE NETWORK LAYER

Catalyst 8500 series switches [Cisco 8500 2009] forward packets via a shared
memory. An abstract model for studying the properties of memory-based
switching and a comparison with other forms of switching can be found in
[Iyer 2002].

Switching via a bus. In this approach, the input ports transfer a packet directly
to the output port over a shared bus, without intervention by the routing processor
(note that when switching via memory, the packet must also cross the system
bus going to/from memory). Although the routing processor is not involved in
the bus transfer, because the bus is shared, only one packet at a time can be
transferred over the bus. A packet arriving at an input port and finding the bus
busy with the transfer of another packet is blocked from passing through the
switching fabric and is queued at the input port. Because every packet must
cross the single bus, the switching bandwidth of the router is limited to the
bus speed.

Given that bus bandwidths of over 1 Gbps are possible in today’s technology,
switching via a bus is often sufficient for routers that operate in access and enter-
prise networks (for example, local area and corporate networks). Bus-based
switching has been adopted in a number of current router products, including the
Cisco 5600 [Cisco Switches 2009], which switches packets over a 32 Gbps back-
plane bus.

Switching via an interconnection network. One way to overcome the bandwidth
limitation of a single, shared bus is to use a more sophisticated interconnection
network, such as those that have been used in the past to interconnect processors
in a multiprocessor computer architecture. A crossbar switch is an interconnec-
tion network consisting of 2n buses that connect n input ports to n output ports,
as shown in Figure 4.8. A packet arriving at an input port travels along the
horizontal bus attached to the input port until it intersects with the vertical bus
leading to the desired output port. If the vertical bus leading to the output port is
free, the packet is transferred to the output port. If the vertical bus is being used
to transfer a packet from another input port to this same output port, the arriving
packet is blocked and must be queued at the input port.

Delta and Omega switching fabrics have also been proposed as an interconnec-
tion network between input and output ports. See [Tobagi 1990] for a survey of
switch architectures. Cisco 12000 family switches [Cisco 12000 2009] use an
interconnection network, providing up to 60 Gbps through the switching fabric.
One trend in interconnection network design [Keshav 1998] is to fragment a
variable-length IP packet into fixed-length cells, then tag and switch the fixed-
length cells through the interconnection network. The cells are then reassembled
into the original packet at the output port. The fixed-length cell and internal tag
can considerably simplify and speed up the switching of the packet through the
interconnection network.

4.3 « WHAT'S INSIDE A ROUTER?

Queuing (buffer Data link
Switch management) processing] Line

fabric m (protocol, termination
encapsulation)

Figure 4.9 ¢+ Output port processing

4.3.3 Output Ports

Output port processing, shown in Figure 4.9, takes the packets that have been
stored in the output port’s memory and transmits them over the outgoing link. The
data link protocol processing and line termination are the send-side link- and
physical-layer functionality that interacts with the input port on the other end of
the outgoing link, as discussed in Section 4.3.1. The queuing and buffer manage-
ment functionality is needed when the switch fabric delivers packets to the output
port at a rate that exceeds the output link rate; we’ll cover output port queuing
below.

4.3.4 Where Does Queuing Occur?

If we look at the input and output port functionality and the configurations shown in
Figure 4.8, it is evident that packet queues can form at both the input ports and the
output ports. It is important to consider these queues in a bit more detail, since as
these queues grow large, the router’s buffer space will eventually be exhausted and
packet loss will occur. Recall that in our earlier discussions, we said that packets
were lost within the network or dropped at a router. It is here, at these queues within
a router, where such packets are actually dropped and lost. The actual location of
packet loss (either at the input port queues or the output port queues) will depend on
the traffic load, the relative speed of the switching fabric, and the line speed, as dis-
cussed below.

Suppose that the input line speeds and output line speeds are all identical, and
that there are n input ports and n output ports. Define the switching fabric speed as
the rate at which the switching fabric can move packets from input ports to output
ports. If the switching fabric speed is at least n times as fast as the input line speed,
then no queuing can occur at the input ports. This is because even in the worst case,
where all n input lines are receiving packets, the switch will be able to transfer n
packets from input port to output port in the time it takes each of the n input ports to
(simultaneously) receive a single packet. But what can happen at the output ports?
Let us suppose still that the switching fabric is at least n times as fast as the line

337

338

CHAPTER 4

* THE NETWORK LAYER

speeds. In the worst case, the packets arriving at each of the n input ports will be
destined to the same output port. In this case, in the time it takes to receive (or send)
a single packet, n packets will arrive at this output port. Since the output port can
transmit only a single packet in a unit of time (the packet transmission time), the n
arriving packets will have to queue (wait) for transmission over the outgoing link.
Then n more packets can possibly arrive in the time it takes to transmit just one of
the n packets that had previously been queued. And so on. Eventually, the number
of queued packets can grow large enough to exhaust the memory space at the output
port, in which case packets are dropped.

Output port queuing is illustrated in Figure 4.10. At time ¢, a packet has arrived
at each of the incoming input ports, each destined for the uppermost outgoing port.
Assuming identical line speeds and a switch operating at three times the line speed,
one time unit later (that is, in the time needed to receive or send a packet), all three
original packets have been transferred to the outgoing port and are queued awaiting
transmission. In the next time unit, one of these three packets will have been trans-
mitted over the outgoing link. In our example, two new packets have arrived at the

Output port contention at time t

A= B
- L) —
- 1L JO0—

One packet time later

—[][N W JC]—
—[J[H e[J—
—[][N - L 10—

Figure 4.10 ¢ Output port queuing

4.3 « WHAT'S INSIDE A ROUTER?

incoming side of the switch; one of these packets is destined for this uppermost
output port.

Given that router buffers are needed to absorb the fluctuations in traffic load, the
natural question to ask is how much buffering is required. For many years, the rule
of thumb [RFC 3439] for buffer sizing was that the amount of buffering (B) should
be equal to an average round-trip time (R77, say 250 msec) times the link capacity
(C). This result is based on an analysis of the queueing dynamics of a relatively
small number of TCP flows [Villamizar 1994]. Thus, a 10 Gbps link with an RTT of
250 msec would need an amount of buffering equal to B = RTT - C = 2.5 Gbps of
buffers. Recent theoretical and experimental efforts [Appenzeller 2004], however,
suggest that when there are a large number of TCP flows (N) passing through a link,
the amount of buffering needed is B = RTT - C/AN. With a large number of flows
typically passing through large backbone router links (see, e.g., [Fraleigh 2003]), the
value of N can be large, with the decrease in needed buffer size becoming quite sig-
nificant. [Appenzellar 2004; Wischik 2005; Beheshti 2008] provide very readable
discussions of the buffer sizing problem from a theoretical, implementation, and
operational standpoint.

A consequence of output port queuing is that a packet scheduler at the output
port must choose one packet among those queued for transmission. This selection
might be done on a simple basis, such as first-come-first-served (FCFS) scheduling,
or a more sophisticated scheduling discipline such as weighted fair queuing (WFQ),
which shares the outgoing link fairly among the different end-to-end connections
that have packets queued for transmission. Packet scheduling plays a crucial role in
providing quality-of-service guarantees. We’ll thus cover packet scheduling exten-
sively in Chapter 7. A discussion of output port packet scheduling disciplines is
[Cisco Queue 2009].

Similarly, if there is not enough memory to buffer an incoming packet, a deci-
sion must be made to either drop the arriving packet (a policy known as drop-tail)
or remove one or more already-queued packets to make room for the newly arrived
packet. In some cases, it may be advantageous to drop (or mark the header of) a
packet before the buffer is full in order to provide a congestion signal to the sender.
A number of packet-dropping and -marking policies (which collectively have
become known as active queue management (AQM) algorithms) have been
proposed and analyzed [Labrador 1999, Hollot 2002]. One of the most widely stud-
ied and implemented AQM algorithms is the Random Early Detection (RED)
algorithm. Under RED, a weighted average is maintained for the length of the out-
put queue. If the average queue length is less than a minimum threshold, min,,
when a packet arrives, the packet is admitted to the queue. Conversely, if the queue
is full or the average queue length is greater than a maximum threshold, max,,, when
a packet arrives, the packet is marked or dropped. Finally, if the packet arrives to
find an average queue length in the interval [min,,, max,], the packet is marked or
dropped with a probability that is typically some function of the average queue

339

340

CHAPTER 4

* THE NETWORK LAYER

Output port contention at time t—
o